
End of Undecidability;
Start of Boolean Logic

CS254
Chris Pollett
Sep 20, 2006.

Outline

• R, r.e., co-r.e. structure
• Enumerators
• Rice’s Theorem
• Boolean Logic

Summary of Structural Results
• Let co-r.e. denote the languages whose complement is an

r.e. language.
• The set of language which are either r.e. or co-r.e. is

countable, therefore by last day we know that there are
languages which are neither r.e. nor co-r.e.

• Since the complement of any recursive language is
recursive, we know HTM is not recursive.

• We also know from last day that if L is r.e. and co-r.e then
L is recursive.

• So we have established our first structural diagram for
languages…

Structure Diagram

Space of all languages

r.e. co-r.e.
recursive

HTM
HTM

Enumerators

• An enumerator is a Turing machine which starts on a blank tape and
starts computing. (It is where the term recursive enumerable comes
from)

• The language output by an enumerator E is the set of strings x such
that at some point in E’s computation the input tape looked like y_x_.

Proposition. L is recursively enumerable iff it is the language of some
enumerator. (Remark: iff is an abbreviation for if and only if)

Proof. Suppose L is recursively enumerable by a 1-tape M. Consider the
enumerator which has three tapes. The second tape keeps track of the
stage; the third take keeps track of the string. In stage i the enumerator,
cycles through each of the lexicographically first i strings in the
alphabet (on tape 3), writes one to the input tape and simulate M for i
steps on this string. If M accepts it erases the input tape and writes this
string there. This shows one direction. Suppose L is enumerated by
some E. Consider the machine which on input x, simulates E on
auxiliary tapes step by step, after each step it checks: has E output x? If
it has, the the machines halt in state yes.

Rice’s Theorem
• This theorem shows that almost any problem one could come up with connected to

Turing Machines is undecidable.
Theorem. Let P be a language such that there exists TM descriptions <M> ∈ P and <M′> ∉

P. Further assume that whenever we have two machines M1 and M2 such that L(M1) =
L(M2), then we have <M1> ∈ P iff <M2> ∈ P. Then P is undecidable.

Proof. Suppose we had a decider R for P. We show how to use R to build a decider for HTM.
Let T∅ be a TM which never halts. We may assume <T∅> ∉ P; otherwise, we carry
out our argument using P. Because P is not trivial there exists a TM T wit <T> ∈ P.
Using these machines consider the following decider S for HTM:
S = “On input <M, w>:

1. Use M and w to construct the following TM Mw :
Mw = “ On input x:
1. Simulate M on w. If it halts proceed to stage 2.
2. Simulate T on x.”
So if M halts on w Mw has the same language as T; otherwise, S has the

same language as T∅ .

2. Use TM R to determine whether < Mw > ∈ P. If yes, accept. If no, reject.”

Example Use of Rice’s Theorem

• Consider the language L={<M>| L(M) contains
the string 01}

• Then the machine M1 which immediately halts in
the ‘no’ state is not in the language

• The machine M2 which accepts just the string 01
is in the language.

• Notice further if we have two machines with the
same language, that language will either have 01
or not. So their codes will either both be in L or
both not in L.

• So Rice’s Theorem applies and we can conclude L
is not recursive (i.e., L is undecidable).

Boolean Logic

• Logic is closely related to computation.
• Over the next couple lectures we will

explore this connections as well as the
basics of Boolean logic

Boolean Expressions

• Are built out of a countable set of variables X={x1,x2, …},
and the operations AND (∧), OR (∨), and NOT (¬) as
follows:

Defn. A Boolean expression can be any one of (a) a Boolean
variable, (b) ¬F provided F is a Boolean expression, (c) (F
∧ G) provided F, G are a Boolean expressions, or (d) (F ∨
G) provided F, G are a Boolean expressions. Case (b) is
called the negation of F; case (c) is called the conjunction
of F and G; and case (d) is called the disjunction of F and
G.

• For example, F := (¬(x1 ∨ x2) ∧ x5) is a Boolean expression.

Truth Assignments

• A truth assignment is a mapping T from a finite subset X´ of variables X to the set
{true, false}

• We define T satisfies (or models) a formula F, written T |= F, inductively. If F is a
variable then T |= F means T(F) = true. If F is of the form ¬G, then T|= F holds provide
T did not satisfy G . That is, T|=/=G . If F is of the form (G ∧ H) then T|=F holds
provided both T|=G and T|=H hold. Finally, if F is of the form (G ∨ H) then T|=F
provided at least one of T|=G or T|=H hold.

• For example, consider the formula F of the last slide. Let T(x1)=T(x2) =T(x3) = false,
T(x4) = T(x5) = true, then T |= F.

• By considering different truth assignments we can view this F as a function from three
boolean variables to true or false.

• We write F=>G as an abbreviation for (¬F ∨ G) and we write F <=> G as an
abbreviation for (F=>G) ∧(G=>F)

• We say two formulas F, G are equivalent, written F≡G, if for any T, T|=F iff T|=G.
• Proposition 4.1 in the book gives a list of common equivalences among boolean

expressions, for instance, things like (F ∨ G) ≡(G ∨ F) and DeMorgan’s laws. You
should know these.

