End of Undecidability;
Start of Boolean Logic

CS254
Chris Pollett
Sep 20, 2006.

Outline

R, r.e., co-r.e. structure
Enumerators
Rice’s Theorem

Boolean Logic

Summary of Structural Results

Let co-r.e. denote the languages whose complement is an
r.e. language.

The set of language which are either r.e. or co-r.e. 1s
countable, therefore by last day we know that there are
languages which are neither r.e. nor co-r.e.

Since the complement of any recursive language 1s
recursive, we know Hy,, 1s not recursive.

We also know from last day that if L 1s r.e. and co-r.e then
L 1s recursive.

So we have established our first structural diagram for
languages...

Structure Diagram

Space of all languages

recursive

Enumerators

* An enumerator is a Turing machine which starts on a blank tape and
starts computing. (It is where the term recursive enumerable comes
from)

* The language output by an enumerator E is the set of strings x such
that at some point in E’s computation the input tape looked like y_x_.

Proposition. L is recursively enumerable iff it is the language of some
enumerator. (Remark: iff 1s an abbreviation for if and only if)

Proof. Suppose L is recursively enumerable by a 1-tape M. Consider the
enumerator which has three tapes. The second tape keeps track of the
stage; the third take keeps track of the string. In stage 1 the enumerator,
cycles through each of the lexicographically first 1 strings in the
alphabet (on tape 3), writes one to the input tape and simulate M for 1
steps on this string. If M accepts it erases the input tape and writes this
string there. This shows one direction. Suppose L is enumerated by
some E. Consider the machine which on input x, simulates E on
auxiliary tapes step by step, after each step it checks: has E output x? If
it has, the the machines halt in state yes.

Rice’s Theorem

. This theorem shows that almost any problem one could come up with connected to
Turing Machines is undecidable.

Theorem. Let P be a language such that there exists TM descriptions <M> &€ P and <M’> &

P. Further assume that whenever we have two machines M, and M, such that L(M,) =
L(M,), then we have <M > & P iff <M,> & P. Then P is undecidable.

Proof. Suppose we had a decider R for P. We show how to use R to build a decider for Hyy,.
Let Ty be a TM which never halts. We may assume <T > ¢ P; otherwise, we carry
out our argument using P. Because P is not trivial there exists a TM T wit <T> € P.
Using these machines consider the following decider § for Hypy:

S = “On input <M, w>:

L.

Use M and w to construct the following TM M, :

M, =" On input x:

1. Simulate M on w. If it halts proceed to stage 2.

2. Simulate T on x.”

So if M halts on w M,, has the same language as T; otherwise, S has the
same language as T.

Use TM R to determine whether < M, > € P. If yes, accept. If no, reject.”

Example Use of Rice’s Theorem

Consider the language L={<M>| L(M) contains
the string O1 }

rm

I'hen the machine M; which immediately halts in
the ‘no’ state 1s not in the language

The machine M, which accepts just the string 01
1s 1in the language.

Notice further if we have two machines with the
same language, that language will either have 01
or not. So their codes will either both be in L or
both not 1n L.

So Rice’s Theorem applies and we can conclude L
1s not recursive (i.e., L 1s undecidable).

Boolean Logic

e Logic is closely related to computation.

e Over the next couple lectures we will
explore this connections as well as the
basics of Boolean logic

Boolean Expressions

e Are built out of a countable set of variables X={x,,X,, ...},
and the operations AND (A), OR (v), and NOT (=) as

follows:

Defn. A Boolean expression can be any one of (a) a Boolean
variable, (b) =F provided F is a Boolean expression, (¢) (F
A G) provided F, G are a Boolean expressions, or (d) (F v
G) provided F, G are a Boolean expressions. Case (b) is
called the negation of F; case (c) is called the conjunction
of F and G; and case (d) 1s called the disjunction of F and

G.

« Forexample, F:=(—=(X; V X,) A Xs5) 1S a Boolean expression.

Truth Assignments

A truth assignment is a mapping T from a finite subset X~ of variables X to the set
{true, false}

We define T satisfies (or models) a formula F, written T |= F, inductively. If Fis a
variable then T |= F means T(F) = true. If F is of the form =G, then Tl=F holds provide
T did not satisfy G . That is, Tl=/=G . If F is of the form (G A H) then TI=F holds
provided both TI=G and TI=H hold. Finally, if F is of the form (G v H) then TI=F
provided at least one of TI=G or TI=H hold.

For example, consider the formula F of the last slide. Let T(X,)=T(X,) =T(X;) = false,
T(x,) =T(X5) =true, then T |=F.

By considering different truth assignments we can view this F as a function from three
boolean variables to true or false.

We write F=>G as an abbreviation for (=F v G) and we write F <=> G as an
abbreviation for (F=>G) A(G=>F)

We say two formulas F, G are equivalent, written F=G, if for any T, TI=F iff TI=G.
Proposition 4.1 in the book gives a list of common equivalences among boolean
expressions, for instance, things like (F v G) =(G v F) and DeMorgan’s laws. You
should know these.

