End of Undecidability; Start of Boolean Logic

CS254

Chris Pollett

Sep 20, 2006.

Outline

- R, r.e., co-r.e. structure
- Enumerators
- Rice's Theorem
- Boolean Logic

Summary of Structural Results

- Let co-r.e. denote the languages whose complement is an r.e. language.
- The set of language which are either r.e. or co-r.e. is countable, therefore by last day we know that there are languages which are neither r.e. nor co-r.e.
- Since the complement of any recursive language is recursive, we know \overline{H}_{TM} is not recursive.
- We also know from last day that if L is r.e. and co-r.e then L is recursive.
- So we have established our first structural diagram for languages...

Structure Diagram

Enumerators

- An **enumerator** is a Turing machine which starts on a blank tape and starts computing. (It is where the term recursive enumerable comes from)
- The language output by an enumerator E is the set of strings x such that at some point in E's computation the input tape looked like y_x_.
- **Proposition.** L is recursively enumerable iff it is the language of some enumerator. (Remark: iff is an abbreviation for if and only if)
- **Proof.** Suppose L is recursively enumerable by a 1-tape M. Consider the enumerator which has three tapes. The second tape keeps track of the stage; the third take keeps track of the string. In stage i the enumerator, cycles through each of the lexicographically first i strings in the alphabet (on tape 3), writes one to the input tape and simulate M for i steps on this string. If M accepts it erases the input tape and writes this string there. This shows one direction. Suppose L is enumerated by some E. Consider the machine which on input x, simulates E on auxiliary tapes step by step, after each step it checks: has E output x? If it has, the the machines halt in state yes.

Rice's Theorem

- This theorem shows that almost any problem one could come up with connected to Turing Machines is undecidable.
- **Theorem.** Let *P* be a language such that there exists TM descriptions $\langle M \rangle \in P$ and $\langle M' \rangle \notin P$. Further assume that whenever we have two machines M_1 and M_2 such that $L(M_1) = L(M_2)$, then we have $\langle M_1 \rangle \in P$ iff $\langle M_2 \rangle \in P$. Then *P* is undecidable.
- **Proof.** Suppose we had a decider *R* for *P*. We show how to use *R* to build a decider for H_{TM} . Let T_{\emptyset} be a TM which never halts. We may assume $\langle T_{\emptyset} \rangle \notin P$; otherwise, we carry out our argument using \overline{P} . Because *P* is not trivial there exists a TM *T* wit $\langle T \rangle \in P$. Using these machines consider the following decider *S* for H_{TM} :
 - *S* = "On input *<M*, *w>*:
 - 1. Use *M* and *w* to construct the following TM M_w :
 - $M_w =$ "On input *x*:
 - 1. Simulate *M* on *w*. If it halts proceed to stage 2.
 - 2. Simulate T on x."
 - So if M halts on w M_w has the same language as T; otherwise, S has the same language as T_{\emptyset} .
 - 2. Use TM *R* to determine whether $\langle M_w \rangle \in P$. If yes, *accept*. If no, *reject*."

Example Use of Rice's Theorem

- Consider the language L={<M>| L(M) contains the string 01}
- Then the machine M₁ which immediately halts in the 'no' state is not in the language
- The machine M_2 which accepts just the string 01 is in the language.
- Notice further if we have two machines with the same language, that language will either have 01 or not. So their codes will either both be in L or both not in L.
- So Rice's Theorem applies and we can conclude L is not recursive (i.e., L is undecidable).

Boolean Logic

- Logic is closely related to computation.
- Over the next couple lectures we will explore this connections as well as the basics of Boolean logic

Boolean Expressions

- Are built out of a countable set of variables X={x₁,x₂, ...}, and the operations AND (∧), OR (∨), and NOT (¬) as follows:
- Defn. A *Boolean expression* can be any one of (a) a Boolean variable, (b) ¬F provided F is a Boolean expression, (c) (F ∧ G) provided F, G are a Boolean expressions, or (d) (F ∨ G) provided F, G are a Boolean expressions. Case (b) is called the *negation* of F; case (c) is called the *conjunction* of F and G; and case (d) is called the *disjunction* of F and G.
- For example, $F := (\neg (x_1 \lor x_2) \land x_5)$ is a Boolean expression.

Truth Assignments

- A *truth assignment* is a mapping T from a finite subset X' of variables X to the set {true, false}
- We define T satisfies (or models) a formula F, written T |= F, inductively. If F is a variable then T |= F means T(F) = true. If F is of the form ¬G, then T|= F holds provide T did not satisfy G. That is, T|=/=G. If F is of the form (G ∧ H) then T|=F holds provided both T|=G and T|=H hold. Finally, if F is of the form (G ∨ H) then T|=F provided at least one of T|=G or T|=H hold.
- For example, consider the formula F of the last slide. Let $T(x_1)=T(x_2)=T(x_3)=$ false, $T(x_4) = T(x_5) =$ true, then T \models F.
- By considering different truth assignments we can view this F as a function from three boolean variables to true or false.
- We write F=>G as an abbreviation for $(\neg F \lor G)$ and we write F <=> G as an abbreviation for (F=>G) \land (G=>F)
- We say two formulas F, G are equivalent, written F=G, if for any T, T=F iff T=G.
- Proposition 4.1 in the book gives a list of common equivalences among boolean expressions, for instance, things like (F ∨ G) =(G ∨ F) and DeMorgan's laws. You should know these.