End of Undecidability; Start of Boolean Logic

CS254
Chris Pollett
Sep 20, 2006.

Outline

- R, r.e., co-r.e. structure
- Enumerators
- Rice's Theorem
- Boolean Logic

Summary of Structural Results

- Let co-r.e. denote the languages whose complement is an r.e. language.
- The set of language which are either r.e. or co-r.e. is countable, therefore by last day we know that there are languages which are neither r.e. nor co-r.e.
- Since the complement of any recursive language is recursive, we know H_{TM} is not recursive.
- We also know from last day that if L is r.e. and co-r.e then L is recursive.
- So we have established our first structural diagram for languages...

Structure Diagram

Enumerators

- An enumerator is a Turing machine which starts on a blank tape and starts computing. (It is where the term recursive enumerable comes from)
- The language output by an enumerator E is the set of strings x such that at some point in E's computation the input tape looked like $y_{-} x_{-}$.
Proposition. L is recursively enumerable iff it is the language of some enumerator. (Remark: iff is an abbreviation for if and only if)
Proof. Suppose L is recursively enumerable by a 1-tape M. Consider the enumerator which has three tapes. The second tape keeps track of the stage; the third take keeps track of the string. In stage i the enumerator, cycles through each of the lexicographically first i strings in the alphabet (on tape 3), writes one to the input tape and simulate M for i steps on this string. If M accepts it erases the input tape and writes this string there. This shows one direction. Suppose L is enumerated by some E. Consider the machine which on input x , simulates E on auxiliary tapes step by step, after each step it checks: has E output x? If it has, the the machines halt in state yes.

Rice's Theorem

- This theorem shows that almost any problem one could come up with connected to Turing Machines is undecidable.
Theorem. Let P be a language such that there exists TM descriptions $<\mathrm{M}>\in P$ and $<M^{\prime}>\notin$ P. Further assume that whenever we have two machines M_{1} and M_{2} such that $\mathrm{L}\left(M_{1}\right)=$ $\mathrm{L}\left(M_{2}\right)$, then we have $\left.<M_{1}\right\rangle \in P$ iff $\left\langle M_{2}\right\rangle \in P$. Then P is undecidable.
Proof. Suppose we had a decider R for P. We show how to use R to build a decider for H_{TM}. Let T_{\varnothing} be a TM which never halts. We may assume $\left\langle\mathrm{T}_{\varnothing}\right\rangle \notin P$; otherwise, we carry out our argument using \bar{P}. Because P is not trivial there exists a TM T wit $<T>\in P$. Using these machines consider the following decider S for H_{TM} :
$S=$ "On input $\langle M, w\rangle$:

1. Use M and w to construct the following TM M_{w} :
$M_{w}=$ " On input x :
2. Simulate M on w. If it halts proceed to stage 2 .
3. Simulate T on x."

So if M halts on w M_{w} has the same language as T ; otherwise, S has the same language as T_{\varnothing}.
2. Use TM R to determine whether $<M_{w}>\in P$. If yes, accept. If no, reject."

Example Use of Rice's Theorem

- Consider the language $\mathrm{L}=\{<\mathrm{M}>\mid \mathrm{L}(\mathrm{M})$ contains the string 01$\}$
- Then the machine M_{1} which immediately halts in the 'no' state is not in the language
- The machine M_{2} which accepts just the string 01 is in the language.
- Notice further if we have two machines with the same language, that language will either have 01 or not. So their codes will either both be in L or both not in L.
- So Rice's Theorem applies and we can conclude L is not recursive (i.e., L is undecidable).

Boolean Logic

- Logic is closely related to computation.
- Over the next couple lectures we will explore this connections as well as the basics of Boolean logic

Boolean Expressions

- Are built out of a countable set of variables $X=\left\{x_{1}, x_{2}, \ldots\right\}$, and the operations AND (\wedge), OR (\vee), and NOT (\neg) as follows:
Defn. A Boolean expression can be any one of (a) a Boolean variable, (b) $\neg \mathrm{F}$ provided F is a Boolean expression, (c) (F $\wedge G)$ provided F, G are a Boolean expressions, or (d) (F \vee G) provided F, G are a Boolean expressions. Case (b) is called the negation of F ; case (c) is called the conjunction of F and G ; and case (d) is called the disjunction of F and G.
- For example, $\mathrm{F}:=\left(\neg\left(\mathrm{X}_{1} \vee \mathrm{x}_{2}\right) \wedge \mathrm{X}_{5}\right)$ is a Boolean expression.

Truth Assignments

- A truth assignment is a mapping T from a finite subset X^{\prime} of variables X to the set \{true, false $\}$
- We define T satisfies (or models) a formula F , written $\mathrm{T} \mathrm{l}=\mathrm{F}$, inductively. If F is a variable then $T \mathrm{I}=\mathrm{F}$ means $\mathrm{T}(\mathrm{F})=$ true. If F is of the form $\neg \mathrm{G}$, then $\mathrm{T} \mid=\mathrm{F}$ holds provide T did not satisfy G. That is, $T \mid=/=G$. If F is of the form $(G \wedge H)$ then $T \mid=F$ holds provided both $T \mid=G$ and $T \mid=H$ hold. Finally, if F is of the form $(G \vee H)$ then $T \mid=F$ provided at least one of $\mathrm{T} \mid=\mathrm{G}$ or $\mathrm{T} \mid=\mathrm{H}$ hold.
- For example, consider the formula F of the last slide. Let $T\left(x_{1}\right)=T\left(x_{2}\right)=T\left(x_{3}\right)=$ false, $\mathrm{T}\left(\mathrm{X}_{4}\right)=\mathrm{T}\left(\mathrm{X}_{5}\right)=$ true, then $\mathrm{T}=\mathrm{F}$.
- By considering different truth assignments we can view this F as a function from three boolean variables to true or false.
- We write $\mathrm{F}=>\mathrm{G}$ as an abbreviation for $(\neg \mathrm{F} \vee \mathrm{G})$ and we write $\mathrm{F}<=>\mathrm{G}$ as an abbreviation for $(\mathrm{F}=>\mathrm{G}) \wedge(\mathrm{G}=>\mathrm{F})$
- We say two formulas F , G are equivalent, written $\mathrm{F} \equiv \mathrm{G}$, if for any $\mathrm{T}, \mathrm{T} \mid=\mathrm{F}$ iff $\mathrm{T} \mid=\mathrm{G}$.
- Proposition 4.1 in the book gives a list of common equivalences among boolean expressions, for instance, things like $(F \vee G) \equiv(G \vee F)$ and DeMorgan's laws. You should know these.

