
Undecidability

CS254
Chris Pollett
Sep 18, 2006.

Outline

• Diagonalization
• Undecidability of the Halting Problem
• Facts about recursive and r.e. lanaguages

Universal Turing Machines

• It is natural to write Turing Machine programs as strings, say <M>.
• One might hope there is a decision procedure for the Halting problem:

H={ <M,w> | Here <M,w> is a coding as a string for pair M, w where M is a TM and
w is a string and M halts on w}

• This language is recursive enumerable. Consider:
U=“ On input <M,w>, where M is a TM and w is a string:
1. Simulate M on input w.
2. If M ever enters ia halt state, halt the same way; otherwise keep running”

• The above Turing Machine is called a Universal Turing Machine (a
UTM) because it can be used to simulate any other Turing machine.

• However, as U on a given input does not necessarily halt, it is not a decision
procedure for H.

• It turns out it is impossible to get a decision procedure for H.

Toward showing H is not
recursive

• To see this we will use an idea known as diagonalization.
• Recall two sets have the same size if there is a 1-1, onto

map (a bijection) between them.
• A set A is countable if there is a bijection between it either

the natural numbers or an initial segment of the natural
numbers.

• For example,
– the set {a, b, c, d} is countable --- let f map a -> 0, b->1, c->2,

d->3
– the set {2, 4, 6, 8, …} is countable -- let f(k) --> (1/2)*k
– the set of finite strings over an alphabet is countable. Map the

empty string to 0, then map the strings of length 1 to the next
group of natural numbers; then map the strings of length 2; etc.

Diagonalization

• Suppose f is a one-to-one function from a countable set A={a(0), a(1), a(2), …} to
sequences of elements over some set B of size at least 2, such that the length of the
sequence f(a(i)) is at least i.

• For example,
f(a(0)) = (1, 0, 1)
f(a(1)) = (0, 0, 0)
f(a(2)) = (0, 1, 1)

• Let f(a(i))j denote the jth element of the sequence f(a(i)).
• The diagonal of this function is the function of f is the sequence d(f)=(f(a(0))0, f(a(1))1,

f(a(2))2,…).
• So in this case d(f) = (1, 0, 1).
• Call a sequence d’(f) a complement of the diagonal if d’(f)i is always different from

d(f)i.
• For example, for the f above a possible d’(f) is (0, 1, 0).
• The following theorem is an easy consequence of our definition.
Theorem (Diagonalization Theorem) If f satisfies the first bullet above then it does not map

any element to a complement of its diagonal.

Example Use of the Diagonalization Theorem

Corollary. A countable set A is not the same size as its P(A).
Proof. Let f:A --> P(A) be a supposed bijection. Since A is

countable, we have some function a(k) to list out its
elements a(0), a(1), a(2), …An element {a(2), a(5),
..}∈P(A) can be view as an binary sequence (0, 0, 1, 0, 0,
1, …) where we have a 1 if a(i) is in P(A) and a 0
otherwise. So f satisfies the Diagonalization theorem. A
complement of the diagonal for f will still be in P(A) but
not mapped to by f.

• A set which is not countable is uncountable.
• Let N be the natural numbers. So P(N) is uncountable.

Non Recursively Enumerable
Languages

Another corollary to the Diagonalization Theorem is the
following:

Corollary. Some languages are not recursive enumerable.
Proof. The set of infinite sequences over {0,1} is

uncountable, as we just indicated in the last proof there
is a bijection between this set and P(N). On the other
hand, each encoding <M> of a Turing Machine is a
finite string over a finite alphabet and we argued earlier
today that the set of finite strings over an alphabet is
countable.

The Halting Problem is not
Recursive

Theorem. The language HTM= {<M,w> | M is a TM and M halts on w} is not
recursive.

Proof. Suppose H is a decider for HTM. Fix Mi and consider w’s of the form
<Mj> for some other TM, Mi. Then listing out encodings of TM’s in lex
order <M0>, <M1>,.. we can create an infinite binary sequence where we
have a 1 in the jth slot if <Mj> causes Mi to halt and a 0 otherwise. If H is
a decider HTM then we can consider a variant on the complement of the
diagonal of the map f:<Mi> |--> (H(<Mi,<M0>), H(<Mi,<M1>>),..). In
particular, we can let D be the machine:
D=“On input <M>, where M is a TM:

– Run H on input <M, <M>>
– If H says Yes, then run forever. If H says no, then say halt.”

 Now consider D(<D>). Machine D halts if and only if H on input <D,
<D>> rejects. But H on input <D, <D>> rejects means that D did not halt
on input <D>. This is contradictory. A similar argument can be made
about if D does not halt <D>. Since assuming the existence of H leads to a
contradiction, H must not exist. Q.E.D.

Another way to look at this is if you give an H which purports to be a
decider for HTM then we can give a specific input, <D, <D>>, which is
calculated based on H on which H fails.

An Example of Undecidability

Proposition. The following language is not recursive:
L={<M> | M halts on all inputs}

Proof. Suppose D were a decider for L. Consider the machine M’ which
when given an input x, checks if x=w, if it does the machine
simulate M(w); otherwise, it halts. Then M’ halts on all inputs iff M
halts on w. Further we can build <M’> from <M,w> using a Turing
Machine . So given D we could decide HTM by running the
procedure:
“On input <M, w>:
(1) Build <M’>
(2) Run D on <M’> and accept if it does; reject otherwise”
Since we know there isn’t a decider for HTM we therefore know D
cannot exist.

More facts about Recursive Languages

Proposition. If L is recursive, the so is L.
Proof. If M is a decider for L reverse its yes no states to get a decider for
L.

Proposition. If L and L are recursively enumerable, then L is recursive.

Proof. Let M and M be machines for L and L . Have a tape that is used for
a counter. On input x in stage t simulate M for t steps and then
simulate M for t steps. If M halts with a yes then halt with a yes; if M
halts with a yes; halt no. Otherwise, go on to stage t+1. At some point
one of the two machines must halt.

