
Reductions

CS254
Chris Pollett
Oct 16, 2006.

Outline

• Reductions
• Completeness
• Closure Under Reductions

Introductions to Reductions
• The class NP contains an infinite number of

languages.
• We have already mentioned that TSP(D) is in NP.

Similarly, SAT is in NP, and so is
REACHABILITY.

• How do we compare how hard one problem X is
versus another problem Y?

• One way would be to show instances of X map
efficiently to instances of Y. Then we could say, if
we can do Y efficiently, we can do X efficiently.
Or another way, Y is at least as hard as X.

• This is the idea behind the notion of reduction.

Definition
We say L1 is reducible to language L2 with respect to

reduction computable in the functions class FC, if there is
some function f in FC such that for all strings x,

x∈ L1 iff f(x) ∈ L2.
• For example, we showed in the practice midterm, every r.e.

language is reducible to the halting problem via a
computable function.

• For this class, we will mainly be interested in the case
where FC is either the deterministic logspace computable
functions or the deterministic polynomial time computable
functions. Both of these classes are closed under
composition (We’ll see for logspace in amoment). So
logspace or p-time is what we’ll mean by efficient.

Proposition

If R is a logspace reduction computed by a Turing
Machine M, then for all inputs x, M halts after a
polynomial number of steps.

Proof. There are O(nclog n) = O(n1+log c) possible
configurations for M on input x, where n=|x|.
Since M is deterministic and doesn’t run forever,
no configuration can repeat. So the machine must
halt within time O(n1+log c).

Examples
• Hamiltonian Path is the problem given the adjacency matrix I for a graph

G=(V,E) written as a string is there a path in this graph which visits each
node exactly once?

• One can show this problem reduces to SAT. Given I we compute an instance
of SAT as follows

1. We use variables xij to represent that j is the ith vertex used in the Hamiltonian
path.

2. For each 1≤j≤n=|V|, we have a clause (x1jV…Vxnj) (excluding xjj) to say each
vertex must appear in the path.

3. We have clauses (¬ xij V¬xik) to say that node i cannot be two different vertices.
4. Finally, for each pair (i,j) which is not in G and for k =1, .. n-1 we have the

clause (¬ xki V¬xk+1j) to say that i is not followed in the path by j.
• Notice (2) and (3) can be computed only knowing the number of vertices

and given the adjacency graph we only need to remember the row i and the
column j (logarithmic amount of info) to determine if we should spit out a
given clause or not.

Composition of Reductions
Prop. Assume FC is close under composition. If S is a reduction in FC of

L1 to L2 and R is a reduction in FC of L2 to L3. Then R°S is a reduction
in FC of L1 to L3.

Proof. Notice x ∈ L1 iff S(x) ∈ L2 iff R(S(x)) ∈ L3. Q.E.D.
• To see FL (the class of functions in logspace) is closed under

composition, we have to be careful, since the output tape of S is write-
only and typically the output takes polynomial many squares to store.
Instead, we simulate the machine for R by keeping on a counter which
tape square i it is reading from the output of S(x). To figure out the
value of this tape square we start simulating S(x), ignoring any writes
it does, but keeping track of the number of times it was about to write.
When S it is about to do it’s ith write, we jump back to our simulation
of R and use this value.

Completeness

Defn. Let C be a complexity class, and let L be a
language in C. We say that L is C-complete with
respect to reductions in FC´ if any language L´ in
C can be reduced to L via a reduction computable
in FC´.

Example. The Halting Problem is complete for the
r.e. languages with respect to Turing computable
reductions.

• One can view complete problems as the hardest
problems in a given complexity class.

Closure under Reductions
• We say a complexity class C is closed under reductions if

whenever L is in C and L´ is reducible to L then L´ is in C.
• It is not too hard to show P, NP, coNP, L, NL, PSPACE,

and EXP are all closed under logspace computable
reductions.

• TIME(n) is not closed under logspace reductions.
Therefore, TIME(n) cannot equal any of these classes.

Prop. If two classes C and C´ are both closed under
reductions then if there is a complete language L in C
which is also in C´ then C⊆C´.

