
NSPACE and Reductions

CS254
Chris Pollett
Oct 9, 2006.

Outline

• Savitch’s Theorem
• Immerman-Szelepscenyi
• Reductions

Savitch’s Theorem

• Last day, we showed L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE and
from the space hierarchy theorem we know L ≠ PSPACE
from the space hierarchy theorem.

• So one of the in between inclusions must be strict.
• Could it be possible for two of these classes to be the

same? For instance, how likely is it that P=NP?
• Have collapses ever been proven before?
• The answer is yes. One example, follows from Savitch’s

Theorem
Thm. (Savitch) Reachability is in SPACE(log2 n).

Proof of Savitch’s Theorem

• Let G be a graph with n nodes, let x and y be nodes of G, and let i≥0.
We say that the predicate PATH(x,y,i) holds if: there is a path from x
to y in G of length at most 2i.

• We can compute reachability of any two nodes in G if we can
determine if PATH(x,y, [log n]) holds.

• We are going to build a TM with two tapes beside the input tape.
• We will assume the input tape has the adjacency matrix for G.
• We will assume the first tape has already copied onto it, the nodes x, y

and the integer i in binary. This tape will typically store several triples
of which (x,y,i) will be the leftmost.

• The other tape is used as scratch space…

Proof of Savitch’s Theorem cont’d

• We start with i=0 and try to compute PATH(x, y, 0). This involves
checking whether x=y or whether then is a single edge in the
adjacency matrix between x and y. Both of which can be done in log
space.

• For i≥0 we can compute PATH(x,y,i) with the recursive algorithm:
– For all nodes z test whether PATH(x, z, i-1) and PATH(y,z, i-1).

• We can generate each z in turn reusing space and perform the test. As
there are n nodes it takes at [log n] bits to store z. Once a z is generated
we add (x,z, i-1) to the main work tape. If there is a PATH(x,z,i), we
replace (x,z,i-1) on the work tape with (y,z,i-1) and compute
PATH(y,z,i-1). If there is no such path we move on to the next z.

• Notice at any given time in computing PATH(x,y, [log n]) we have at
most log n many triples on the work tape and that each triple takes at
most 3 [log n] to store. So this algorithm is in SPACE(log2 n) as
desired.

 A Corollary

Corollary. NSPACE(f(n)) ⊆ SPACE([f(n)]2) for any proper
complexity function f(n)≥n.

Proof. Recall from last day that the configuration graph on
inputs of length n for a machine M whose language is in
NSPACE(f(n)) has size at most klog n +f(n) for some k.
Whether an accepting configuration is reachable from the
start configuration is an instance of reachability so can be
solved in SPACE([log (klogn +f(n))]2) = SPACE([f(n)]2).

 (By space compression the base of the log can be chosen to
be k.)

Corollary. NPSPACE =PSPACE.

Is L=NL?

• The square factor in the time bound for
reachability prevents us from showing that L=NL.

• Nevertheless, Immerman-Szelepscenyi were able
to show:

Theorem. Given a graph G and a node x, the
number of nodes reachable from x in G can be
computed by a nondeterminstic TM within log n
space.

Proof of Immerman-Szelepscenyi
The algorithm has four nested loops:
• The outer loop computes iteratively |S(1)|, |S(2)|, …, |S(n-1)| where S(k) is

the set of nodes in G that can be reached from x by paths of length k. Thus,
|S(n-1)| is the number we want to compute.

• The second loop uses |S(k-1)| to compute |S(k)|. Let l be the current count.
At the start of this loop l=0. The second loop checks for each node reusing
space u=1,..,n if u is in S(k) and if it is increments l=l+1.

• The third loop is used by the second loop in determining if u is in S(k). It
checks each node v reusing space if it is in S(k-1). Let m be a counter of the
number of such v so far. To see if u is in S(k) we check whether u=v or
there is an edge from v to u, in which case we report true. If we reach the
last v and m < |S(k-1)|, then we reply no on this nondeterministic
computation branch. If m=|S(k-1)|, then we say u is not in S(k).

• The fourth loop is used to say whether v is in S(k-1). Looping given x we
nondeterministically guess k-1 nodes ui, in turn, for each pair checking
there is an edge between them. We check the last one is v.

Another Corollary

If f≥ log n is a proper complexity function, then
NSPACE(f(n)) = coNSPACE(f(n)).

Proof. Suppose L is in NSPACE(f(n)), decided by
some M. We will show that L is decided by some
nondeterministic machine M. On input x, M runs
the algorithm of the last theorem on the
configuration graph of M on x. If while running
this algorithm M discovers an accepting
computation of u is in S(k), then it halts and
rejects (it is decdiing the complement). Otherwise,
if |S(n-1)| is computed and no accepting
computation has been encountered, M accepts.

