
Hierarchy Theorems

CS254
Chris Pollett
Oct 9, 2006.

Outline

• Complexity Classes
• The Hierarchy Theorem
• Relationships Between Classes

Complexity Classes

• Complexity classes are made up of several
parameters.
– Model of computation -- we are using k-tape machines
– Mode -- we will consider deterministic and

nondeterministic modes
– Resource -- we are mainly interested in the resources of

time and space.
– Bound -- how many units of the given resource we are

allowed to use. This is typically given by some function
f.

Proper Complexity Functions
• What makes a good function for a resource bound?

– We want to avoid weird functions like f(n) = 0 if n is even and is equal to
2n if n is odd.

Defn Let f be a function from the nonnegative integers to the nonnegative
integers. We say f is a proper complexity function if f is
nondecreasing and there is a deterministic TM Mf which when started
with x on the input tape, runs for t=O(|x| +f(|x|)) steps using at most
O(f(|x|)) space which outputs to an output tape the string If(|x|). Here
space is measured disregarding the input, and output. The input tape is
assumed to be read-only and we assume we also have a dedicated,
write-only output tape.

• For example, a constant c, n, [log n] are all proper complexity
functions. One can show that is f and g are proper so are f+g, f*g, and
2g.

Precise Machines
• One application of proper complexity classes is that we can get our machines

to run for the same amount of time on all inputs of the same length.
Defn A Turing machine M is precise, if there are functions f and g, such that for

every input x of length n and every computation of M on x, M halts after
precisely f(n) steps and except for the input and output tape, all other tapes
have used length precisely g(n).

Prop. Suppose (deterministic or nondeterministic) M decides L within time (or
space) f(n), where f is a proper function. Then there is a precise machine M´ ,
ehich decides the same language in time (resp. space) O(f(n)).

Proof. We will only consider the time case, the space case is similar. First on
input x, M´ computes the machine Mf for f using a new set of tapes. After this
computation ends, M´ has If(|x|) written on some tape. M´ rewinds this tape. So
far the computation is deterministic. M´ then begins simulating M which may
be deterministic or nondeterministic. At each step of simulating M, M´
advances the tape head on the tape with If(|x|) written on it. M halts in at most
f(n) steps. At which point, M´ remembers how M halted and continues down
the tape with If(|x|) on it until it gets to a blank. At this point it halts in the same
way as M.

Specific Complexity Classes
• We will be interested in the complexity classes TIME(f), SPACE(f),

NTIME(f), and NSPACE(f) usually for some proper function f.
• We will also be interested in the unions of such classes. For instance,

P = Uj>0TIME(nj),
NP = Uj>0NTIME(nj),
PSPACE = Uj>0SPACE(nj),
NPSPACE = Uj>0NPSPACE(nj),
E = Uj>0TIME(2j*n),
EXP = Uj>0TIME(2n^j),

• Finally, we will consider the classes L=SPACE(log n) and
NL=NSPACE(log n). For these classes, the input tape is read-only and
space is measured in terms of squares used on the work tapes.

• Given a class of language C, the class of languages co-C are defined
as { L | L is in C}. For example, co-r.e., co-NP, etc.

The Hierarchy Theorem

• We next turn to the question of when can
we show a language is in TIME(f) but not in
TIME(g)? Here g is a slower growing
proper function than f.

• To do this we are going to look at clocked
based variant of the halting problem. For
f(n)≥n, define:
Hf = { <M, x> | M accepts input x after at most

f(|x|) steps}

More on the Hierarchy Theorem
Lemma. Hf∈ TIME((f(n))3).
Proof. We will give a variation of a universal machine to prove this. Let Uf have 4 tapes.
 Let n= |<M,x>|. First, Uf use Mf to write an “alarm clock” amount of time If(n) on the

fourth tape. The fourth head is then rewound. Using the input <M,x>, the second tape is
initialized to encode the start state s of M, <M> is copied to the third tape and converted
into a 1-tape machine using our earlier simulation (this machine executes one step of the
original machine in at most O(f(n)) steps and we could speed this to f(n)). The first tape
is set up with just x on it. Doing all this, takes O(f(n)) time. The modified M is then
simulated step by step. This involves:

– Comparing the current state, and current head position of tape 1 against the transition function
of M on tape 3 until a match its found

– applying the appropriate change to the first tape and updating the current state on the second
tape.

– advancing the alarm clock tape.
Simulating one step of the modified M take O(f(n)) steps on Uf. So simulating one step
of the original takes O(f(n)2) steps on Uf. We simulate exactly f(n) steps of M by using
our clock and determine if we have accepted by then. So the total time is O(f(n)3),
which gives Hf∈ TIME((f(n))3). as desired.

Still More on the Hierarchy Theorem

Lemma Hf∉ TIME(f([n/2]).
Proof. Suppose MH_f decides Hf in time f([n/2]). Let Df be a diagonalizing

machine that computes:
Df(<M>) : if MH_f(<M, M>) = “yes” then “no” else “yes”.
This machine on input <M> runs in the same time as MH_f on input
<M,M>, that is, in time f([2n+1/2]) =f(n).
Does Df accept its own description? Suppose Df(<Df>) = “yes”. By our
definition of Df this is done in at most f(n) steps. This means MH_f(<
Df, Df >) = “no”, which means < Df, Df > ∉ Hf

. This means Df on input
Df did not accept in f(n) steps, contradiction our starting assumption.
Starting with Df(<Df>) = “no” we can follow a similar chain of
reasoning to get a contradiction.

Putting it all together

• Using the last two lemmas together one can show:
The Time Hierarchy Theorem. If f(n)≥n is a proper

complexity function, then the class TIME(f(n)) is strictly
contained in TIME(f(2n+1)3).

• This can be improved to TIME(f(n)log2f(n)).

Corollary. P is a proper subset of EXP.

• A similar technique as above can be used to show:
The Space Hierarchy Theorem. If f(n) is a proper function, then

SPACE(f(n)) is a proper subset of SPACE(f(n)log f(n)).

Relationships Between Space and
Time

• The following theorem collects together a lot of what we know
about the relationships between time and space classes:

Theorem. Suppose f(n) is a proper complexity function. Then:
a) SPACE(f(n)) ⊆ NSPACE(f(n)) and TIME(f(n)) ⊆ NTIME(f(n)).
b) NTIME(f(n)) ⊆ SPACE(f(n)).
c) NSPACE(f(n)) ⊆ TIME(klog n +f(n))

Proof. (a) is trivial. To see (b) recall our machine to simulate a
nondeterministic machine by a deterministic one, many lectures
back could simulate up to f(|x|) steps using the exact same space as
the nondeterministic machine except for one auxiliary tape that
stores only string up to length f(|x|) coding the nondeterministic
choices. We will prove (c) on the next slide.

More on Relationships Between
Space and Time

For (c), let L be a langauge in NSPACE(f(n)) and let M decide it. We
assume the input tape is read only and we can ignore the output tape.
Therefore a configuration of a k-tape machine looks like (q, i,
w2,u2,…, wk,uk). Notice this input tape is replace with an index i of the
tape square we are reading. There are a total of at most

|K|*(n+1)*|∑|(2k-2)|f(n)|

 configurations. i.e, clog n +f(n)
 configurations for some c depending only

on M. Given this space of configurations define a graph where we
have an edge between two configuration C and C´ if C there is a one
step transition from C to C´ according to M. So determining if x is in L
is equivalent to checking if an accepting halt configuration is reachable
from the start configuration of M on x. Since the reachability
algorithm we had before is quadratic in the size of the graph, we can
determine this in time O((clog n +f(n))2

) = O(klog n +f(n)) where k=c2.
Linear speed up then gives the result.

Corollary. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.

