Hierarchy Theorems

CS254
Chris Pollett
Oct 9, 2006.

Outline

- Complexity Classes
- The Hierarchy Theorem
- Relationships Between Classes

Complexity Classes

- Complexity classes are made up of several parameters.
- Model of computation -- we are using k-tape machines
- Mode -- we will consider deterministic and nondeterministic modes
- Resource -- we are mainly interested in the resources of time and space.
- Bound -- how many units of the given resource we are allowed to use. This is typically given by some function f.

Proper Complexity Functions

- What makes a good function for a resource bound?
- We want to avoid weird functions like $f(n)=0$ if n is even and is equal to 2^{n} if n is odd.
Def $\underline{\underline{n}}$ Let f be a function from the nonnegative integers to the nonnegative integers. We say f is a proper complexity function if f is nondecreasing and there is a deterministic $\mathrm{TM} \mathrm{M}_{\mathrm{f}}$ which when started with x on the input tape, runs for $\mathrm{t}=\mathrm{O}(|\mathrm{x}|+\mathrm{f}(|\mathrm{x}|))$ steps using at most $\mathrm{O}(\mathrm{f}(|\mathrm{x}|))$ space which outputs to an output tape the string $\mathrm{I}^{\mathrm{f}(|\mathrm{x}|)}$. Here space is measured disregarding the input, and output. The input tape is assumed to be read-only and we assume we also have a dedicated, write-only output tape.
- For example, a constant $\mathrm{c}, \mathrm{n},[\log \mathrm{n}]$ are all proper complexity functions. One can show that is f and g are proper so are $f+g, f * g$, and $2{ }^{\mathrm{g}}$.

Precise Machines

- One application of proper complexity classes is that we can get our machines to run for the same amount of time on all inputs of the same length.
Def ${ }^{\text {A }}$ A Turing machine M is precise, if there are functions f and g, such that for every input x of length n and every computation of M on x, M halts after precisely $f(n)$ steps and except for the input and output tape, all other tapes have used length precisely $g(n)$.
Prop. Suppose (deterministic or nondeterministic) M decides L within time (or space) $f(n)$, where f is a proper function. Then there is a precise machine M^{\prime}, ehich decides the same language in time (resp. space) $\mathrm{O}(\mathrm{f}(\mathrm{n})$).
Proof. We will only consider the time case, the space case is similar. First on input $\mathrm{x}, \mathrm{M}^{\prime}$ computes the machine M_{f} for f using a new set of tapes. After this computation ends, M^{\prime} has $\mathrm{I}^{\mathrm{f}(\mathrm{xl\mid})}$ written on some tape. M^{\prime} rewinds this tape. So far the computation is deterministic. M^{\prime} then begins simulating M which may be deterministic or nondeterministic. At each step of simulating $\mathrm{M}, \mathrm{M}^{\prime}$ advances the tape head on the tape with $\mathrm{I}^{\mathrm{f}(\mathrm{xl})}$ written on it. M halts in at most $\mathrm{f}(\mathrm{n})$ steps. At which point, M^{\prime} remembers how M halted and continues down the tape with $\mathrm{I}^{\mathrm{f}(\mathrm{xx\mid})}$ on it until it gets to a blank. At this point it halts in the same way as M .

Specific Complexity Classes

- We will be interested in the complexity classes TIME(f), SPACE(f), NTIME(f), and NSPACE(f) usually for some proper function f .
- We will also be interested in the unions of such classes. For instance,

$$
\begin{aligned}
& \mathrm{P}=\mathrm{U}_{\mathrm{j}>0} \mathrm{TIME}\left(\mathrm{n}^{\mathrm{j}}\right) \text {, } \\
& \mathrm{NP}=\mathrm{U}_{\mathrm{j}>0} \operatorname{NTIME}\left(\mathrm{n}^{\mathrm{j}}\right) \text {, } \\
& \text { PSPACE }=\mathrm{U}_{\mathrm{j}>0} \operatorname{SPACE}\left(\mathrm{n}^{\mathrm{j}}\right) \text {, } \\
& \text { NPSPACE } \left.=\mathrm{U}_{\mathrm{j}>0} \text { NPSPACE(} \mathrm{n}^{\mathrm{j}}\right) \text {, } \\
& \mathrm{E}=\mathrm{U}_{\mathrm{j}>0} \operatorname{TIME}\left(2^{j^{* n} \mathrm{n}}\right) \text {, } \\
& \operatorname{EXP}=\mathrm{U}_{\mathrm{j}>0} \operatorname{TIME}\left(2^{\mathrm{n}^{\wedge} \mathrm{j}}\right) \text {, }
\end{aligned}
$$

- Finally, we will consider the classes $\mathrm{L}=\mathrm{SPACE}(\log \mathrm{n})$ and NL=NSPACE $(\log n)$. For these classes, the input tape is read-only and space is measured in terms of squares used on the work tapes.
- Given a class of language C , the class of languages co-C are defined as $\{\overline{\mathrm{L}} \mid \mathrm{L}$ is in C$\}$. For example, co-r.e., co-NP, etc.

The Hierarchy Theorem

- We next turn to the question of when can we show a language is in TIME(f) but not in TIME(g)? Here g is a slower growing proper function than f .
- To do this we are going to look at clocked based variant of the halting problem. For $f(n) \geq n$, define:
$\mathrm{H}_{\mathrm{f}}=\{\langle\mathrm{M}, \mathrm{x}>| \mathrm{M}$ accepts input x after at most f(|x|) steps\}

More on the Hierarchy Theorem

Lemma. $\left.\mathrm{H}_{\mathrm{f}} \in \operatorname{TIME}(\mathrm{f}(\mathrm{n}))^{3}\right)$.
Proof. We will give a variation of a universal machine to prove this. Let U_{f} have 4 tapes. Let $\mathrm{n}=\mid<\mathrm{M}, \mathrm{x}>1$. First, U_{f} use M_{f} to write an "alarm clock" amount of time $\mathrm{I}^{\mathrm{f}(\mathrm{n})}$ on the fourth tape. The fourth head is then rewound. Using the input $\langle\mathrm{M}, \mathrm{x}>$, the second tape is initialized to encode the start state s of $\mathrm{M},<\mathrm{M}>$ is copied to the third tape and converted into a 1-tape machine using our earlier simulation (this machine executes one step of the original machine in at most $\mathrm{O}(\mathrm{f}(\mathrm{n})$) steps and we could speed this to $\mathrm{f}(\mathrm{n})$). The first tape is set up with just x on it. Doing all this, takes $\mathrm{O}(\mathrm{f}(\mathrm{n})$) time. The modified M is then simulated step by step. This involves:

- Comparing the current state, and current head position of tape 1 against the transition function of M on tape 3 until a match its found
- applying the appropriate change to the first tape and updating the current state on the second tape.
- advancing the alarm clock tape.

Simulating one step of the modified M take $\mathrm{O}\left(\mathrm{f}(\mathrm{n})\right.$) steps on U_{f}. So simulating one step of the original takes $\mathrm{O}\left(\mathrm{f}(\mathrm{n})^{2}\right)$ steps on U_{f}. We simulate exactly $\mathrm{f}(\mathrm{n})$ steps of M by using our clock and determine if we have accepted by then. So the total time is $\mathrm{O}\left(\mathrm{f}(\mathrm{n})^{3}\right)$, which gives $H_{f} \in \operatorname{TIME}\left((\mathrm{f}(\mathrm{n}))^{3}\right)$. as desired.

Still More on the Hierarchy Theorem

Lemma $\mathrm{H}_{\mathrm{f}} \notin \operatorname{TIME}(\mathrm{f}([\mathrm{n} / 2])$.
Proof. Suppose $\mathrm{M}_{\mathrm{H}_{-} \mathrm{f}}$ decides H_{f} in time $\mathrm{f}([\mathrm{n} / 2])$. Let D_{f} be a diagonalizing machine that computes:
$\left.\mathrm{D}_{\mathrm{f}}(<\mathrm{M}\rangle\right)$: if $\left.\mathrm{M}_{\mathrm{H}_{-} \mathrm{f}}(<\mathrm{M}, \mathrm{M}\rangle\right)=$ "yes" then "no" else "yes".
This machine on input $<\mathrm{M}>$ runs in the same time as $\mathrm{M}_{\mathrm{H}_{-} \mathrm{f}}$ on input $<\mathrm{M}, \mathrm{M}>$, that is, in time $\mathrm{f}([2 \mathrm{n}+1 / 2])=\mathrm{f}(\mathrm{n})$.
Does D_{f} accept its own description? Suppose $\mathrm{D}_{\mathrm{f}}\left(\left\langle\mathrm{D}_{\mathrm{f}}\right\rangle\right)=$ "yes". By our definition of D_{f} this is done in at most $f(n)$ steps. This means $M_{H_{-} f} f$ $\mathrm{D}_{\mathrm{f}}, \mathrm{D}_{\mathrm{f}}>$) = "no", which means $<\mathrm{D}_{\mathrm{f}}, \mathrm{D}_{\mathrm{f}}>\notin \mathrm{H}_{\mathrm{f}}$ This means D_{f} on input D_{f} did not accept in $\mathrm{f}(\mathrm{n})$ steps, contradiction our starting assumption. Starting with $\mathrm{D}_{\mathrm{f}}\left(\left\langle\mathrm{D}_{\mathrm{f}}\right\rangle\right)=$ "no" we can follow a similar chain of reasoning to get a contradiction.

Putting it all together

- Using the last two lemmas together one can show:

The Time Hierarchy Theorem. If $f(n) \geq n$ is a proper complexity function, then the class $\operatorname{TIME}(\mathrm{f}(\mathrm{n}))$ is strictly contained in $\operatorname{TIME}\left(\mathrm{f}(2 \mathrm{n}+1)^{3}\right)$.

- This can be improved to TIME(f(n) $\left.\log ^{2} f(n)\right)$.

Corollary. P is a proper subset of EXP.

- A similar technique as above can be used to show:

The Space Hierarchy Theorem. If $f(n)$ is a proper function, then $\operatorname{SPACE}(\mathrm{f}(\mathrm{n}))$ is a proper subset of $\operatorname{SPACE}(\mathrm{f}(\mathrm{n}) \log \mathrm{f}(\mathrm{n}))$.

Relationships Between Space and Time

- The following theorem collects together a lot of what we know about the relationships between time and space classes:
Theorem. Suppose $f(n)$ is a proper complexity function. Then:
a) $\quad \operatorname{SPACE}(\mathrm{f}(\mathrm{n})) \subseteq \operatorname{NSPACE}(\mathrm{f}(\mathrm{n}))$ and $\operatorname{TIME}(\mathrm{f}(\mathrm{n})) \subseteq \operatorname{NTIME}(\mathrm{f}(\mathrm{n}))$.
b) $\operatorname{NTIME(f(n))\subseteq \operatorname {SPACE}(f(n))\text {.}}$
c) $\operatorname{NSPACE}(\mathrm{f}(\mathrm{n})) \subseteq \operatorname{TIME}\left(\mathrm{k}^{\log \mathrm{n}+\mathrm{f}(\mathrm{n})}\right)$

Proof. (a) is trivial. To see (b) recall our machine to simulate a nondeterministic machine by a deterministic one, many lectures back could simulate up to $\mathrm{f}(|\mathrm{x}|)$ steps using the exact same space as the nondeterministic machine except for one auxiliary tape that stores only string up to length $\mathrm{f}(|\mathrm{x}|)$ coding the nondeterministic choices. We will prove (c) on the next slide.

More on Relationships Between Space and Time

For (c), let L be a langauge in $\operatorname{NSPACE}(\mathrm{f}(\mathrm{n})$) and let M decide it. We assume the input tape is read only and we can ignore the output tape. Therefore a configuration of a k-tape machine looks like (q, i, $\mathrm{w}_{2}, \mathrm{u}_{2}, \ldots, \mathrm{w}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}}$). Notice this input tape is replace with an index i of the tape square we are reading. There are a total of at most

$$
|\mathrm{K}|^{*}(\mathrm{n}+1) *\left|\sum\right|^{(2 \mathrm{k}-2)|f(\mathrm{n})|}
$$

configurations. i.e, $\mathrm{c}^{\log n+f(n)}$ configurations for some c depending only on M . Given this space of configurations define a graph where we have an edge between two configuration C and C^{\prime} if C there is a one step transition from C to C^{\prime} according to M . So determining if x is in L is equivalent to checking if an accepting halt configuration is reachable from the start configuration of M on x. Since the reachability algorithm we had before is quadratic in the size of the graph, we can determine this in time $\mathrm{O}\left(\left(\mathrm{c}^{\log \mathrm{n}+\mathrm{f}(\mathrm{n})}\right)^{2}\right)=\mathrm{O}\left(\mathrm{k}^{\log \mathrm{n}+\mathrm{f}(\mathrm{n})}\right)$ where $\mathrm{k}=\mathrm{c}^{2}$.
Linear speed up then gives the result.
Corollary. $\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq$ PSPACE.

