BPP and Circuits.

CS254 Chris Pollett Nov. 8, 2006.

Outline

- The class BPP
- Robustness
- Polynomial size circuits

BPP Motivation

- On Monday we introduced the classes RP, ZPP, and PP.
- Of these, RP and ZPP are realistic models.
- We could imagine using some kind of coin flips to do the nondeterministic choices along one path.
- By running the algorithm repeatedly we could get a good idea if a string was in the language or not.
- PP, on the other hand, has the virtue of having a nice syntactic definition, but it is not realistic.
- The reason is one could imagine situations where x being in languages probability 1/2 +2^{-p(|x|)}. It is hard to then distinguish this from the case that only 1/2 of path accept which would be rejecting.

Chernoff Bounds

• To analyze the notion of repeated runs more carefully, it is useful to make use of an inequality called Chernoff Bounds.

Lemma (Chernoff). Suppose $X_1,...,X_n$ are independent random variables taking the values 1 and 0 with probabilities p and 1-p. Let $X = \sum_{i=1}^{n} X_i$. Then for all $0 \le c \le 1$, prob[$X \ge (1+c)pn$] $\le e^{-(c^2pn)/2}$.

Proof of Lemma

If t is a positive real number, then $\operatorname{prob}[X \ge (1+c)pn] = \operatorname{prob}[e^{tX} \ge e^{t(1+c)pn}]$ (*)By Markov's Inequality, $\text{prob}[e^{tX} \cdot E(e^{tX})] \le 1/k \text{ for any real } k > 0.$ Taking $k=e^{t(1+c)pn}/[E(e^{tX})]$ and using (*) gives $\operatorname{prob}[X \ge (1+c)\operatorname{pn}] \le [E(e^{tX})] \cdot e^{-t(1+c)\operatorname{pn}}. \quad (**)$ Since $X = \sum_{i=1}^{n} x_i$, we have $E(e^{tX}) = [E(e^{tX_1})]^n$ which in turn equals $(1 + p(e^{t}-1))^{n}$. Substituting this into (**) gives: $prob[X \ge (1+c)pn] \le (1 + p(e^{t}-1))^{n} \cdot e^{-t(1+c)pn}$ $\leq e^{-t(1+c)pn} \cdot e^{pn(e^{t}-1)}$, since $(1+a)^n \leq e^{an}$. Take t=ln(1+c) to get prob[X \geq (1+c)pn] \leq e^{pn(c-(1+c)ln(1+c))}. Taylor expanding $\ln(1+c)$ as $c - c^2/2 + \dots$ and substituting gives the result. i/e., $e^{pn(c-(1+c)\ln(1+c))} \le e^{pn(c-(1+c)(c-c^2/2+c^3/3+..))} \le e^{-(c^2pn)/2}$

A Corollary

Cor. If $p=1/2 + \varepsilon$ for some $\varepsilon > 0$, then the probability that $\sum_{i=1}^{n} X_i \le n/2$ is at most $e^{-\varepsilon^2 n/4}$

Proof. Take $c = \epsilon/(1/2 + \epsilon)$. Q.E.D.

So if an experiment has a biased output we can hope to detect this after $1/\epsilon^2$ experiments. For a probability like $2^{-p(n)}$ that we need in the case of PP, this is exponentially small and this is why it is not realistic.

BPP

Defn. The class BPP contains those languages L for which there is a p-time NTM N with the property that for all inputs x, if x is in L then at least 3/4 of N's branches accept and if x is not in L, then 3/4's of N's branches reject.

Robustness

- Notice if we had chosen 1/2+ε in the definition for some 0
 < ε <1/4, in our definition, then it would not have made a difference.
- Let $k = [4 \ln 2/(\epsilon^2)]$. Run the machine that accepts L according to the probabilities $1/2+\epsilon$ a total of 2k+1 times and accept the majority of the outcomes.
- So by Chernoff bounds, the odds that the majority vote of these runs is wrong is at most
 e^{-ε^2(2k+1)/4}≤ e^{-ε^2(2k)/4} = e^{-8ln2/4} = 2⁻² = 1/4.
- Thus, we will accept with the 3/4's probability if its in the languages and reject with 3/4 probability if its not.

Relationships

- Notice by repeating an RP machine a couple of times we get a BPP machine for a language.
- Also any BPP machine for a language is also a PP machine for the same language.
- So $RP \subseteq BPP \subseteq PP$.
- BPP is a semantic class. This because for a L in BPP accepted by some N, we promise that one of the two possible outcomes for x has a clear majority of the N's branches.

Polynomial Size Circuits

- We have already defined what an Boolean circuit is.
- The *size* of a circuit is the number of gates in it.
- We next would like to define what it means for a family of circuits to recognize a language.
- **Defn.** A family of circuits is an infinite sequence $(C_0, C_1, ...)$ of Boolean circuits, where C_n has n input variables. We say a language L has polynomial size circuit, if there is a polynomial p such that size $(C_n) \le p(n)$ and C_n accepts exactly those strings in L.

P is in P/Poly

- We call the class of languages with polynomial circuits P/poly.
- **Thm.** All languages in P have polynomial size circuits.
- **Proof.** This essentially follows from our proof that CVP is P-complete where rather than encode a particular x into the inputs we instead let its value come from variables.