
BPP and Circuits.

CS254
Chris Pollett
Nov. 8, 2006.

Outline

• The class BPP
• Robustness
• Polynomial size circuits

BPP Motivation
• On Monday we introduced the classes RP, ZPP, and PP.
• Of these, RP and ZPP are realistic models.
• We could imagine using some kind of coin flips to do the

nondeterministic choices along one path.
• By running the algorithm repeatedly we could get a good

idea if a string was in the language or not.
• PP, on the other hand, has the virtue of having a nice

syntactic definition, but it is not realistic.
• The reason is one could imagine situations where x being

in languages probability 1/2 +2-p(|x|) . It is hard to then
distinguish this from the case that only 1/2 of path accept
which would be rejecting.

Chernoff Bounds

• To analyze the notion of repeated runs more
carefully, it is useful to make use of an
inequality called Chernoff Bounds.

Lemma (Chernoff). Suppose X1,..,Xn are
independent random variables taking the
values 1 and 0 with probabilities p and 1-p.
Let X = ∑n

i=1Xi. Then for all 0≤c≤1,
prob[X ≥ (1+c)pn] ≤ e-(c pn)/2.2

Proof of Lemma
If t is a positive real number, then

prob[X ≥ (1+c)pn]= prob[etX ≥et(1+c)pn] (*)
By Markov’s Inequality,

prob[etX ·E(etX)]≤1/k for any real k>0.
Taking k=et(1+c)pn/[E(etX)] and using (*) gives

prob[X ≥ (1+c)pn] ≤ [E(etX)]·e-t(1+c)pn. (**)
Since X=∑n

i=1xi, we have E(etX)=[E(etX)]n which in
turn equals (1 + p(et-1))n. Substituting this into
(**) gives:
prob[X ≥ (1+c)pn]≤ (1 + p(et-1))n·e-t(1+c)pn

 ≤ e-t(1+c)pn ·epn (e -1), since (1+a)n≤ean.
Take t=ln(1+c) to get prob[X ≥ (1+c)pn]≤ epn(c-(1+c)ln(1+c)).
Taylor expanding ln(1+c) as c - c2/2 + …and substituting

gives the result. i/e., epn(c-(1+c)ln(1+c)) ≤epn(c-(1+c)(c-c /2 +c /3+..))≤ e -(c pn)/2

1

t

2 23

A Corollary

Cor. If p=1/2 + ε for some ε>0, then the probability
that ∑n

i=1 Xi≤ n/2 is at most e-ε^2n/4

Proof. Take c = ε/(1/2+ ε). Q.E.D.

So if an experiment has a biased output we can hope
to detect this after 1/ε2 experiments. For a
probability like 2-p(n)

 that we need in the case of
PP, this is exponentially small and this is why it is
not realistic.

BPP

Defn. The class BPP contains those languages
L for which there is a p-time NTM N with
the property that for all inputs x, if x is in L
then at least 3/4 of N’s branches accept and
if x is not in L, then 3/4’s of N’s branches
reject.

Robustness
• Notice if we had chosen 1/2+ε in the definition for some 0

< ε <1/4, in our definition, then it would not have made a
difference.

• Let k = [4ln 2/(ε2)]. Run the machine that accepts L
according to the probabilities 1/2+ε a total of 2k+1 times
and accept the majority of the outcomes.

• So by Chernoff bounds, the odds that the majority vote of
these runs is wrong is at most
e-ε^2(2k+1)/4≤ e-ε^2(2k)/4 =e-8ln2/4= 2-2 = 1/4.

• Thus, we will accept with the 3/4’s probability if its in the
languages and reject with 3/4 probability if its not.

Relationships

• Notice by repeating an RP machine a couple of
times we get a BPP machine for a language.

• Also any BPP machine for a language is also a PP
machine for the same language.

• So RP ⊆ BPP ⊆ PP.
• BPP is a semantic class. This because for a L in

BPP accepted by some N, we promise that one of
the two possible outcomes for x has a clear
majority of the N’s branches.

Polynomial Size Circuits

• We have already defined what an Boolean circuit
is.

• The size of a circuit is the number of gates in it.
• We next would like to define what it means for a

family of circuits to recognize a language.
Defn. A family of circuits is an infinite sequence

(C0, C1, …) of Boolean circuits, where Cn has n
input variables. We say a language L has
polynomial size circuit, if there is a polynomial p
such that size(Cn)≤ p(n) and Cn accepts exactly
those strings in L.

P is in P/Poly

• We call the class of languages with
polynomial circuits P/poly.

Thm. All languages in P have polynomial size
circuits.

Proof. This essentially follows from our proof
that CVP is P-complete where rather than
encode a particular x into the inputs we
instead let its value come from variables.

