BPP and Circuits.

CS254
Chris Pollett
Nov. 8, 2006.

Outline

- The class BPP
- Robustness
- Polynomial size circuits

BPP Motivation

- On Monday we introduced the classes RP, ZPP, and PP.
- Of these, RP and ZPP are realistic models.
- We could imagine using some kind of coin flips to do the nondeterministic choices along one path.
- By running the algorithm repeatedly we could get a good idea if a string was in the language or not.
- PP, on the other hand, has the virtue of having a nice syntactic definition, but it is not realistic.
- The reason is one could imagine situations where x being in languages probability $1 / 2+2^{-p(x)}$. It is hard to then distinguish this from the case that only $1 / 2$ of path accept which would be rejecting.

Chernoff Bounds

- To analyze the notion of repeated runs more carefully, it is useful to make use of an inequality called Chernoff Bounds.
Lemma (Chernoff). Suppose $X_{1}, . ., X_{n}$ are independent random variables taking the values 1 and 0 with probabilities p and 1-p. Let $\mathrm{X}=\sum^{\mathrm{n}}{ }_{\mathrm{i}=1} \mathrm{X}_{\mathrm{i}}$. Then for all $0 \leq \mathrm{c} \leq 1$,

$$
\operatorname{prob}[\mathrm{X} \geq(1+\mathrm{c}) \mathrm{pn}] \leq \mathrm{e}^{-\left(\mathrm{c}^{2} \mathrm{pn}\right) / 2} .
$$

Proof of Lemma

If t is a positive real number, then

$$
\begin{equation*}
\operatorname{prob}[\mathrm{X} \geq(1+\mathrm{c}) \operatorname{pn}]=\operatorname{prob}\left[\mathrm{e}^{\mathrm{t}} \geq \mathrm{e}^{(1+\mathrm{c}) \mathrm{pn}}\right] \tag{*}
\end{equation*}
$$

By Markov's Inequality,
$\operatorname{prob}\left[\mathrm{e}^{\mathrm{tX}} \cdot \mathrm{E}\left(\mathrm{e}^{\mathrm{tX}}\right)\right] \leq 1 / \mathrm{k}$ for any real $\mathrm{k}>0$.
 $\operatorname{prob}[\mathrm{X} \geq(1+\mathrm{c}) \mathrm{pn}] \leq\left[\mathrm{E}\left(\mathrm{e}^{\mathrm{tX}}\right)\right] \cdot \mathrm{e}^{-\mathrm{t}(1+\mathrm{c}) \mathrm{pn}} . \quad(* *)$
Since $\mathrm{X}=\sum^{\mathrm{n}}{ }_{\mathrm{i}=1} \mathrm{X}_{\mathrm{i}}$, we have $\mathrm{E}\left(\mathrm{e}^{\mathrm{tX}}\right)=\left[\mathrm{E}\left(\mathrm{e}^{\mathrm{tX}}\right)\right]^{\mathrm{n}}$ which in turn equals $\left(1+p\left(e^{t}-1\right)\right)^{\mathrm{n}}$. Substituting this into (**) gives:

$$
\left.\begin{array}{rl}
\operatorname{prob}[& X \geq(1+c) p n]
\end{array} \leq\left(1+p\left(e^{\mathrm{t}}-1\right)\right)^{\mathrm{n}} \cdot \mathrm{e}^{-t(1+c) p n}\right) .
$$

Take $\mathrm{t}=\ln (1+\mathrm{c})$ to get prob $[\mathrm{X} \geq(1+\mathrm{c}) \mathrm{pn}] \leq \mathrm{e}^{\mathrm{pn}(\mathrm{c}-(1+\mathrm{c}) \ln (1+\mathrm{c}))}$.
Taylor expanding $\ln (1+\mathrm{c})$ as $\mathrm{c}-\mathrm{c}^{2} / 2+\ldots$ and substituting gives the result. i / e., $\mathrm{e}^{\operatorname{en}(c-(1+c) \ln (1+c)) \leq \mathrm{e}^{\operatorname{pn}\left(c-(1+c)\left(c-c^{2} / 2+c^{3} / 3+. .\right)\right.} \leq \mathrm{e}^{-\left(c^{2} p \mathrm{pn}\right) / 2}}$

A Corollary

Cor. If $p=1 / 2+\varepsilon$ for some $\varepsilon>0$, then the probability that $\sum^{n}{ }_{i=1} X_{i} \leq n / 2$ is at most $e^{-\varepsilon^{\wedge} 2 n / 4}$

Proof. Take $\mathrm{c}=\varepsilon /(1 / 2+\varepsilon)$. Q.E.D.
So if an experiment has a biased output we can hope to detect this after $1 / \varepsilon^{2}$ experiments. For a probability like $2-\mathrm{p}(\mathrm{n})$ that we need in the case of PP , this is exponentially small and this is why it is not realistic.

BPP

Defn. The class BPP contains those languages L for which there is a p-time NTM N with the property that for all inputs x, if x is in L then at least $3 / 4$ of N's branches accept and if x is not in L, then 3/4's of N's branches reject.

Robustness

- Notice if we had chosen $1 / 2+\varepsilon$ in the definition for some 0 $<\varepsilon<1 / 4$, in our definition, then it would not have made a difference.
- Let $\mathrm{k}=\left[4 \ln 2 /\left(\varepsilon^{2}\right)\right]$. Run the machine that accepts L according to the probabilities $1 / 2+\varepsilon$ a total of $2 \mathrm{k}+1$ times and accept the majority of the outcomes.
- So by Chernoff bounds, the odds that the majority vote of these runs is wrong is at most

$$
\mathrm{e}^{-\varepsilon^{\wedge} 2(2 \mathrm{k}+1) / 4} \leq \mathrm{e}^{-\varepsilon^{\wedge} 2(2 \mathrm{k}) / 4}=\mathrm{e}^{-8 \ln 2 / 4}=2^{-2}=1 / 4 .
$$

- Thus, we will accept with the $3 / 4$'s probability if its in the languages and reject with $3 / 4$ probability if its not.

Relationships

- Notice by repeating an RP machine a couple of times we get a BPP machine for a language.
- Also any BPP machine for a language is also a PP machine for the same language.
- $\mathrm{So} \mathrm{RP} \subseteq \mathrm{BPP} \subseteq \mathrm{PP}$.
- BPP is a semantic class. This because for a L in BPP accepted by some N , we promise that one of the two possible outcomes for x has a clear majority of the N's branches.

Polynomial Size Circuits

- We have already defined what an Boolean circuit is.
- The size of a circuit is the number of gates in it.
- We next would like to define what it means for a family of circuits to recognize a language.
Defn. A family of circuits is an infinite sequence $\left(\mathrm{C}_{0}, \mathrm{C}_{1}, \ldots\right)$ of Boolean circuits, where C_{n} has n input variables. We say a language L has polynomial size circuit, if there is a polynomial p such that $\operatorname{size}\left(C_{n}\right) \leq p(n)$ and C_{n} accepts exactly those strings in L .

P is in $\mathrm{P} / \mathrm{Poly}$

- We call the class of languages with polynomial circuits $\mathrm{P} /$ poly.
Thm. All languages in P have polynomial size circuits.
Proof. This essentially follows from our proof that CVP is P-complete where rather than encode a particular x into the inputs we instead let its value come from variables.

