More Classes with Randomness.

CS254
Chris Pollett
Nov. 6, 2006.

Outline

- Randomized Algorithms
- Randomized Complexity classes

Random Walks for SAT

- Last day, we presented the following randomized algorithm forf SAT:

1. Start with any truth assignment T , and repeat the following r times:

- If there is no unsatisfied clause output "Satisfiable", halt.
- Otherwise, take any unsatisfied clause; pick any of its literals at random and flip its value

2. After r repetitions reply "the formula is probably unsatisfiable"

- We had not yet determined what is a reasonable r to use when running the algorithm

Theorem

Suppose that the random walk algorithm with $r=2 n^{2}$ is applied to any satisfiable instance of 2SAT with n variables. Then the probability that a satisfying truth assignment will be discovered is at least $1 / 2$.
Proof. Let T be a truth assignment which satisfies the given 2SAT instance I. Let $t(i)$ denote the number of expected repetitions of the flip step until a satisfying assignment is found starting from anassignment T^{\prime} which differs in at most i positions from T. Notice:

1. $\mathrm{t}(0)=0$
2. If we find some other satisfying assignment we do not need to continue
3. Otherwise, we flip at least once, and we have a 50% chance of moving closer to the solution; 50% farther. So $t(i) \leq 1 / 2(t(i-1)+t(i+1))+1$
4. We also have $\mathrm{t}(\mathrm{n}) \leq \mathrm{t}(\mathrm{n}-1)+1$ (If every literal is wrong, we can only move closer).
The worst case is the when relation t of 3 holds as an equation. $x(0)=0$;

$$
x(n)=x(n-1)+1 ; x(i)=1 / 2(x(i-1)+x(i+1))+1
$$

Proof Continued
 $$
\begin{aligned} x(1) & =1 / 2[x(0)+x(1)]+1 \\ \vdots & =\vdots \\ x(n-2) & =1 / 2[x(n-3)+x(n-1)]+1 \\ x(n-1) & =1 / 2[x(n-2)+x(n)]+1 \\ x(n) & =x(n-1)+1 \\ +\quad & =1 / 2 x(n)+1 / 2 x(n-1)+\left(\sum_{i=2}^{n-1} x_{i}\right)+1 / 2 x(1)+n \\ \hline x(n)+\left(\sum_{i=2}^{n-1} x_{i}\right)+x(1) & =1 / 2 x(n)+1 / 2 x(n-1)+1 / 2 x(1)+n \\ x(n)+x(1) & =1 / 2 x(n)+1 / 2(x(n)-1)+1 / 2 x(1)+n \\ x(n)+x(1) & =1 / 2 \end{aligned}
$$

Adding all the $\mathrm{x}(\mathrm{i})$'s together gives: $\mathrm{x}(1)=2 \mathrm{n}-1$.
Then solving the x_{1} equation for x_{2} gives $4 n-4$, and in general, $x(i)=2 i n-i^{2}$.
Thus we have shown $t(i) \leq x(i) \leq x(n)=n^{2}$. Now consider the following lemma:

Lemma (Markov Inequality). If x is a random variable taking nonnegative integer values, then for any $k>0$, $\operatorname{prob}[x \geq k * E(x)] \leq 1 / k$.
Proof. Let p_{i} be the probability that $\mathrm{x}=\mathrm{i}$.
$\mathrm{E}(\mathrm{x})=\sum_{\mathrm{i}} \mathrm{i}^{*} \mathrm{p}_{\mathrm{i}}=\sum_{\mathrm{i} \leq k^{*} \mathrm{E}(\mathrm{x})} \mathrm{i}^{*} \mathrm{p}_{\mathrm{i}}+\sum_{\mathrm{i}>\mathrm{k}^{*} \mathrm{E}(\mathrm{x})} \mathrm{i}^{*} \mathrm{p}_{\mathrm{i}}>\mathrm{k} * \mathrm{E}(\mathrm{x})^{*} \operatorname{prob}[\mathrm{x}>\mathrm{k} * \mathrm{E}(\mathrm{x})]$ Q.E.D.

The theorem then follows taking $\mathrm{k}=2$.

Randomized Complexity Classes

- We would like to study randomized algorithms formally in the context of Turing Machines.
- To do this we will need to consider a variation of what it means for a nondeterministic machine accepts:
Defn. Let N be a p-time NDTM. Assume N is also precise (halts in the same number of steps for all inputs of a given length) and always has exactly two nondeterministic moves from any position. Let L be a language. N is a p-time Monte Carlo algorithm for L , if whenever x is in L at least half of N's branches on x accept. Further, if x is not in L then all computation paths halt no. The class of all p-time Monte Carlo languages is denoted RP.

$\mathbf{R P}$ is robust

- Suppose we used some value $e<1 / 2$ rather than $1 / 2$ in the definition of RP.
- Let L be a language in RP which is accepted according to some machine M where at least e fraction of the branches must accept.
- We could repeat M execution k-times and report yes if any of these executions reported yes. The chance of issuing a false negative is then $(1-e)^{k}$.
- Take $\mathrm{k}=[-1 / \log (1-e)]$ makes the probability if x is in the language at least $1 / 2$.

Semantic versus Syntactic Complexity Classes

- There is no easy way to tell if a given TM N satisfies the Monte Carlo condition.
- For instance, for NP the sequence of guesses leading down an accepting path is a certificate of being in the language. If no such certificate exists then we're not in the language.
- For RP, having at least $1 / 2$ the paths accept says we're in the language, but the absence of $1 / 2$ the paths accepting is not the condition for not being in the language -- If we're not in the language we must have all paths rejecting.
- This is similar to the situation for NP \cap coNP and TFNP.
- These classes are called semantic classes in contrast to classes like P and NP which are called syntactic classes.
- Semantic classes don't usually have complete problems.

RP and other Classes

- RP is contained in NP. (A machine recognizing L in RP also recognizes that L is in NP).
- It is unknown if RP is contained in NP \cap coNP
- Given the asymmetry between acceptance and rejection in RP , it is natural to consider the class coRP.
- We define $\mathrm{ZPP}=\mathrm{RP} \cap$ coRP. This is sometimes called the class of languages with Las Vegas algorithms
- It used to be Primes was only known to be in ZPP. Now its known to be in P.

PP

- Consider the problem MAJSAT: Given a boolean expression, do a majority of the assignments satisfy it?
- There is an obvious certificate for this problem namely on n variables give $2^{\mathrm{n}-1}+1$ satisfying truth assignments.
- We let PP be the class of languages L which are recognized by precise NTMs with two branches at every step, such that when x is in L more than half the branches accept and when x is not in L at most half the branches accept.
- You can show MAJSAT is PP-complete under logspace reductions.

Relationships

Theorem NP \subseteq PP. $\begin{array}{ll}\text { All path } & \text { Accept like } \\ \text { accepting } & \text { NP machine }\end{array}$

Proof. Suppose L is in NP by machine N. Let N' be identical to N except that it has a new initial state with two nondeterministic choices out of it. On the first branch, we run for the same number of steps as N (always branching each step two ways) and along every path we accept. On the second branch we simulate N . So N^{\prime} will have more than half its paths accepting iff N has at least one accepting path.

