More Classes with Randomness.

CS254
Chris Pollett
Nov. 6, 2006.

Outline

 Randomized Algorithms

e Randomized Complexity classes

Random Walks for SAT

. Last day, we presented the following randomized algorithm forf
SAT:
1. Start with any truth assignment T, and repeat the following r times:
. If there is no unsatisfied clause output “Satisfiable”, halt.
. Otherwise, take any unsatisfied clause; pick any of its literals at random

and flip its value

2. After r repetitions reply “the formula is probably unsatisfiable”

. We had not yet determined what is a reasonable r to use when
running the algorithm

Theorem

Suppose that the random walk algorithm with r=2n? is applied to any
satisfiable instance of 2SAT with n variables. Then the probability
that a satisfying truth assignment will be discovered is at least 1/2.

Proof. Let T be a truth assignment which satisfies the given 2SAT
instance I. Let t(i) denote the number of expected repetitions of the
flip step until a satisfying assignment is found starting from
anassignment T~ which differs in at most i positions from T. Notice:

I. t0)=0
2. If we find some other satisfying assignment we do not need to continue
3. Otherwise, we flip at least once, and we have a 50% chance of moving

closer to the solution; 50% farther. So t(i)< 1/2(t(i-1) +t(i+1))+1

4. We also have t(n) < t(n-1) + 1(If every literal is wrong, we can only
move closer).

The worst case is the when relation t of 3 holds as an equation. x(0)=0;
x(n)=x(n-1)+1; x(1) = 1/2(x(1-1)+x(+1))+1

;::(1)

z(n—2
z(n—1

Proof Continued - oL

1/2[2(0) + z(1)] + 1

ifQ[a:(n -3)+z(n—-1)]+1
1/2[z(n —2) + z(n)] +1
z(n—1)+1

J

)

)

)+ (1, @) + (1)
z(n) +z(1)

z(n) + z(1)

1/2z(1)

Adding all the x(1)’s together gives:x(1) = 2n-1.

1/2z(n) + 1/2z(n — 1) + (30—, =) + 1/2z(1) +n

l/?x%n) +1/2z(n—1) +1/2z(1) +n
1/2z(n) +1/2(z(n) — 1) +1/2z(1) +n
n—1/2

Then solving the x, equation for x, gives 4n-4, and in general, x(i) =2in-i°.

Thus we have shown t(i)<x(i)<x(n)=n?. Now consider the following

lemma:

Lemma (Markov Inequality). If x is a random variable taking
nonnegative integer values, then for any k>0, prob[x = k*E(x)] < 1/k.

Proof. Let p, be the probability that x=i.

E(X) = Sii%p; = S 1D; + Sisenool ™D > KFE(X)*prob[x>k*E(x)]

Q.E.D.

The theorem then follows taking k=2.

Randomized Complexity Classes

e We would like to study randomized algorithms formally in the context
of Turing Machines.

e To do this we will need to consider a variation of what it means for a
nondeterministic machine accepts:

Defn. Let N be a p-time NDTM. Assume N is also precise (halts in the
same number of steps for all inputs of a given length) and always has
exactly two nondeterministic moves from any position. Let L be a
language. N is a p-time Monte Carlo algorithm for L, if whenever X is
in L at least half of N’s branches on x accept. Further, if x is not in L
then all computation paths halt no. The class of all p-time Monte Carlo
languages is denoted RP.

RP 1s robust

Suppose we used some value e < 1/2 rather than 1/2 in the
definition of RP.

Let L be a language in RP which 1s accepted according to
some machine M where at least e fraction of the branches
must accept.

We could repeat M execution k-times and report yes if any
of these executions reported yes. The chance of 1ssuing a
false negative is then (1-e).

Take k = [-1/log(1-e)] makes the probability if x 1s in the
language at least 1/2.

Semantic versus Syntactic Complexity
Classes

There 1s no easy way to tell if a given TM N satisties the
Monte Carlo condition.

For instance, for NP the sequence of guesses leading down
an accepting path is a certificate of being in the language.
If no such certificate exists then we’re not in the language.

For RP, having at least 1/2 the paths accept says we’re in

the language, but the absence of 1/2 the paths accepting 1s
not the condition for not being in the language -- If we’re

not in the language we must have all paths rejecting.

This 1s similar to the situation for NPMNcoNP and TFNP.

These classes are called semantic classes in contrast to
classes like P and NP which are called syntactic classes.

Semantic classes don’t usually have complete problems.

RP and other Classes

RP is contained in NP. (A machine recognizing L
in RP also recognizes that L is in NP).

It 1s unknown 1f RP 1s contained in NP McoNP

Given the asymmetry between acceptance and
rejection 1in RP, 1t 1s natural to consider the class

coRP.

We define ZPP = RP NMcoRP. This is sometimes

called the class of languages with Las Vegas
algorithms

It used to be Primes was only known to be in ZPP.
Now its known to be in P.

PP

Consider the problem MAJSAT: Given a boolean
expression, do a majority of the assignments
satisfy 1it?

There 1s an obvious certificate for this problem
namely on n variables give 2™!+1 satisfying truth
assignments.

We let PP be the class of languages L. which are
recognized by precise NTMs with two branches at
every step, such that when x i1s in L more than half
the branches accept and when X 1s not in L at most
half the branches accept.

You can show MAJSAT is PP-complete under
logspace reductions.

Relationships m

All paths Accept like
Theorem NPC PP accepting NP machine

Proof. Suppose L is in NP by machine N. Let N” be
1dentical to N except that it has a new 1nitial state
with two nondeterministic choices out of it. On the
first branch, we run for the same number of steps
as N (always branching each step two ways) and
along every path we accept. On the second branch
we simulate N. So N~ will have more than half its
paths accepting 1ff N has at least one accepting
path.

