
More Classes with Randomness.

CS254
Chris Pollett
Nov. 6, 2006.

Outline

• Randomized Algorithms
• Randomized Complexity classes

Random Walks for SAT

• Last day, we presented the following randomized algorithm forf
SAT:

1. Start with any truth assignment T, and repeat the following r times:
• If there is no unsatisfied clause output “Satisfiable”, halt.
• Otherwise, take any unsatisfied clause; pick any of its literals at random

and flip its value
2. After r repetitions reply “the formula is probably unsatisfiable”

• We had not yet determined what is a reasonable r to use when
running the algorithm

Theorem

Suppose that the random walk algorithm with r=2n2 is applied to any
satisfiable instance of 2SAT with n variables. Then the probability
that a satisfying truth assignment will be discovered is at least 1/2.

Proof. Let T be a truth assignment which satisfies the given 2SAT
instance I. Let t(i) denote the number of expected repetitions of the
flip step until a satisfying assignment is found starting from
anassignment T´ which differs in at most i positions from T. Notice:

1. t(0) = 0
2. If we find some other satisfying assignment we do not need to continue
3. Otherwise, we flip at least once, and we have a 50% chance of moving

closer to the solution; 50% farther. So t(i)≤ 1/2(t(i-1) +t(i+1))+1
4. We also have t(n) ≤ t(n-1) + 1(If every literal is wrong, we can only

move closer).
The worst case is the when relation t of 3 holds as an equation. x(0)=0;

x(n)=x(n-1)+1; x(i) = 1/2(x(i-1)+x(i+1))+1

Proof Continued

Adding all the x(i)’s together gives:x(1) = 2n-1.
Then solving the x1 equation for x2 gives 4n-4, and in general, x(i) =2in-i2.
Thus we have shown t(i)≤x(i)≤x(n)=n2. Now consider the following

lemma:
Lemma (Markov Inequality). If x is a random variable taking

nonnegative integer values, then for any k>0, prob[x ≥ k*E(x)] ≤ 1/k.
Proof. Let pi be the probability that x=i.
E(x) = ∑ii*pi = ∑i≤k*E(x) i*pi + ∑i>k*E(x)i*pi > k*E(x)*prob[x>k*E(x)]

Q.E.D.

The theorem then follows taking k=2.

Randomized Complexity Classes

• We would like to study randomized algorithms formally in the context
of Turing Machines.

• To do this we will need to consider a variation of what it means for a
nondeterministic machine accepts:

Defn. Let N be a p-time NDTM. Assume N is also precise (halts in the
same number of steps for all inputs of a given length) and always has
exactly two nondeterministic moves from any position. Let L be a
language. N is a p-time Monte Carlo algorithm for L, if whenever x is
in L at least half of N’s branches on x accept. Further, if x is not in L
then all computation paths halt no. The class of all p-time Monte Carlo
languages is denoted RP.

RP is robust

• Suppose we used some value e < 1/2 rather than 1/2 in the
definition of RP.

• Let L be a language in RP which is accepted according to
some machine M where at least e fraction of the branches
must accept.

• We could repeat M execution k-times and report yes if any
of these executions reported yes. The chance of issuing a
false negative is then (1-e)k.

• Take k = [-1/log(1-e)] makes the probability if x is in the
language at least 1/2.

Semantic versus Syntactic Complexity
Classes

• There is no easy way to tell if a given TM N satisfies the
Monte Carlo condition.

• For instance, for NP the sequence of guesses leading down
an accepting path is a certificate of being in the language.
If no such certificate exists then we’re not in the language.

• For RP, having at least 1/2 the paths accept says we’re in
the language, but the absence of 1/2 the paths accepting is
not the condition for not being in the language -- If we’re
not in the language we must have all paths rejecting.

• This is similar to the situation for NP∩coNP and TFNP.
• These classes are called semantic classes in contrast to

classes like P and NP which are called syntactic classes.
• Semantic classes don’t usually have complete problems.

RP and other Classes

• RP is contained in NP. (A machine recognizing L
in RP also recognizes that L is in NP).

• It is unknown if RP is contained in NP ∩coNP
• Given the asymmetry between acceptance and

rejection in RP, it is natural to consider the class
coRP.

• We define ZPP = RP ∩coRP. This is sometimes
called the class of languages with Las Vegas
algorithms

• It used to be Primes was only known to be in ZPP.
Now its known to be in P.

PP
• Consider the problem MAJSAT: Given a boolean

expression, do a majority of the assignments
satisfy it?

• There is an obvious certificate for this problem
namely on n variables give 2n-1+1 satisfying truth
assignments.

• We let PP be the class of languages L which are
recognized by precise NTMs with two branches at
every step, such that when x is in L more than half
the branches accept and when x is not in L at most
half the branches accept.

• You can show MAJSAT is PP-complete under
logspace reductions.

Relationships

Theorem NP⊆ PP.
Proof. Suppose L is in NP by machine N. Let N´ be

identical to N except that it has a new initial state
with two nondeterministic choices out of it. On the
first branch, we run for the same number of steps
as N (always branching each step two ways) and
along every path we accept. On the second branch
we simulate N. So N´ will have more than half its
paths accepting iff N has at least one accepting
path.

All paths
accepting

Accept like
NP machine

