More Turing Machines

CS254
Chris Pollett
Sep 6, 2006.

Outline

- Diagrams, examples, languages
- Recursive, RE, Functions
- Multi-Tape Turing Machines
- Time and Space classes
- Simulations

A Simple Turing Machine

- The transition function is the most important part of a TM's description.
- We will sometimes use a graphical notation to describe TM's and in particular this function.
- Given a in $\Sigma \cup\{\mathrm{L}, \mathrm{R}\}$ - $\{\#\}$, define a machine Ma_{a} $=\{\{\mathrm{s}, \mathrm{h}\}, \Sigma, \partial, \mathrm{s}\}$, where for each b in $\Sigma-\{\#\}$, $\partial(\mathrm{s}, \mathrm{b})=(\mathrm{h}, \mathrm{a}) . \partial(\mathrm{s}, \#)=\mathrm{R}$.
- That is, if a is a symbol, the only thing M_{a} does is writes that symbol; if a is L or R then the only thing M_{a} does is either move left or right.

Building Bigger TMs

- Given three TMs with a common alphabet: M, N, P , we can build a new machine M^{\prime} which operates as follows:
- Start in the initial state of M; operate as M until M would halt, then
- if the currently scanned symbol is an a, start N
- if the currently scanned symbol is an b, start P .
- halt otherwise.
- Diagrammatically we write:
- As an exercise you should work out
 what M's transition function would look like.

More on Diagrams

- Similar to the if-else type diagram of the last slide we can have diagrams like:
M ----> N
Notice there is no label on the arrow. This means that if machine M is about to transition to its halt state h we instead have it transition to the start state of N .
- We can also generalize the two branch construction of the previous slide toany fixed finite number of branches.

Examples

- We sometimes abbreviate M_{R} as R and M_{a} as a. We might also make abbreviations like Ra for the machine which does M_{R} then reading any symbol write an a. Similarly, we might have RR or La.
- Let ! a denote all the symbols in Σ except a.
- Here is a machine R_{-}that scans right to the first space $>\mathrm{R}^{\bullet}$!
- Here is a machine L that scans left to the first space $>\mathrm{L}^{-}$!

More Examples

- Here is a machine which when started with a string _w on the tape halts with _w_w on the tape. do twice

Computing with Turing Machines

- A configuration of \mathbf{M} is a pair (q, \#wav) where q is a state of the TM, $\# \mathrm{w}$ is the string to the left of the tape head, $\underline{\mathrm{a}}$ is the current symbol being read, and v is the tape square sto the right of the head that are either in the input or have been seen so far during the computation.
- The initial configuration of M is ($\mathrm{s}, ~ \# \mathrm{x}$).
- A computation of M is a sequence of configurations of M $(\mathrm{s}, \# \mathrm{x}):-\left(\mathrm{q}_{1}, \underline{\mathrm{w}}_{\underline{1}}\right):-\ldots:-\left(\mathrm{q}_{\mathrm{m}}, \underline{\mathrm{w}}_{\underline{m}}\right)$ such that each configuration follows from the previous according to M's ∂. Read :- as yields.
- A computation halts if either the state yes or no is reach.
- A machine M accepts a languages L if it stops with state yes when x is in the language and run forever otherwise.

Recursive and Recursive Enumerable

- A language L is said to be recursively enumerable if it is accepted by some Turing Machine
- A language L is said to be recursive if there is a Turing machine M which run on x that is in L, M halts in the yes state; and when run on an x not in L, M halts in the no state.
Proposition If L is recursive then it is recursively enumerable.
Proof. Suppose there is a M which decides L. We can make an M^{\prime} which accept L as follows: M^{\prime} behaves the same as M except that whenever M is about to halt and enter a "no" state M' moves right forever and never halts.

Computing Functions

- Turing machines will be used to model algorithms, so we'll often want to be able to compute functions.
Definition. Let f be a function from $\left(\Sigma-\left\{{ }_{-}\right\}\right)^{*}$ to Σ^{*}. Let M be a TM with alphabet \sum. We say M computes f if for any string x in $\left(\sum-\left\{_\right\}\right)^{*}, \mathrm{M}$ on input x (written as $\mathrm{M}(\mathrm{x})$) halts with $\mathrm{f}(\mathrm{x})$ written on the tape.
- If f can be computed by some M we say f is a recursive function or f is computable.
- Our earlier example shows that the copying map is computable.
- We could code instances of networks as strings, and implement MAX FLOW on a TM using our algorithm from Chapter 1. This would show MAX FLOW is computable.

k tape machine

- One way you might try to improve the power of a TM is to allow multiple tapes.
Definition A k -string TM, where $\mathrm{k} \geq 1$ is an integer, is a quadruple $\mathrm{M}=(\mathrm{K}, \Sigma, \partial, \mathrm{s})$ where $\mathrm{K}, \Sigma, \mathrm{s}$ are as in the 1 -tape case. Now, however, the transition functions is a map
$\partial: K x(\Sigma \cup\{\#\})^{k}-->(K \cup\{h, y e s, n o\}) x(\Sigma \cup\{L, R\})^{k}$
- Basically the heads on each tape can move independently of each other.
- For example, with a two tape machine an algorithm for palindrome testing is easy.
- We set up the transition function so it first copies the first tape input to the second tape.
- Then it rewinds the first tape and leaves the second tape at the end of the input.
- Then the first tape moves right while the second tape moves left and we compare the two tape symbol by symbol. If they don't match we hat in a no. If the second tape gets back to the \# then we accept.

TIME and SPACE classes.

- We shall use the k-tape model of TM as our basic model to study time and space complexity.
- Let $\mathrm{f}: \mathbf{N}$--> \mathbf{N}. We say that machine \mathbf{M} operates within time $\mathrm{f}(\mathrm{n})$ if for any input string x, the time require by M on input x is at $\operatorname{most} f(|x|)$. Here $|\mathrm{x}|$ is the length of x as a string. We can make a similar definition for space.
Defn. We say that a language L is in TIME(f(n)) (resp. $\operatorname{SPACE}(\mathrm{f}(\mathrm{n}))$) if it is decided by some k-tape TM in time $f(n)$ (resp. space $f(n)$).
- For example, the algorithm for palindrome in time $\operatorname{TIME}(3(\mathrm{n}+2))$.
- You can show for a single tape machine for palindrome you need at least time $\Omega\left(\mathrm{n}^{2}\right)$.
- How well can a 1-tape machine simulate a k-tape machine?

Simulating k-tape by 1 -tape

Thm. Given any k-tape machine M that operates within time $f(n)$, we can construct a 1-tape machine M'operating within time $\mathrm{O}\left((\mathrm{f}(\mathrm{n}))^{2}\right)$.
Proof. Let $\mathrm{M}=(\mathrm{K}, \Sigma, \partial, \mathrm{s})$ be a k tape machine.

- The idea is M^{\prime} alphabet, Σ^{\prime}, is going to be expanded to include symbol \#' to denote the last used square of a tape. And we are going to add to Σ^{\prime} a symbol \underline{b} for each symbol b in Σ.
- A configuration of M can now be written as:
(q, \#w $\mathrm{w}_{1} \mathrm{a}_{1} \mathrm{v}_{1} \#^{\prime} \mathrm{w}_{2} \mathrm{a}_{2} \mathrm{v}_{2} \#^{\prime} \ldots \# \mathrm{w}_{\mathrm{k}} \mathrm{a}_{k} \mathrm{v}_{\mathrm{k}} \#^{\prime}$)
- So except for the state which we can keep track of in K^{\prime} the rest of the state is a string over Σ^{\prime}.
- We will use new states K^{\prime} to keep track of the state of M during a simulation step.
- To simulate M , we first convert the input into the initial configuration of M viewed as a string.
- Then to simulate a step we scan left to right the current configuration string, noting what symbol is being read by each tape in our finite control.
- Next we rewind the tape and we then do passes again to update each tapes configuration.
- In the worst case we need to expand the number of tape square of each tape by 1 . So we could need $(\mathrm{k}(\mathrm{f}(\mathrm{x} \mid)+1)+1$, passes to simulate 1 step.
- So simulating $\mathrm{f}(\mid \mathrm{xl})$ steps take at most $\mathrm{f}(\mathrm{x} \mid \mathrm{l})\left((\mathrm{k}(\mathrm{f}(|\mathrm{x}|)+1)+1)\right.$ times which is $\left.\mathrm{O}(\mathrm{f}(\mathrm{n}))^{2}\right)$.

