
More Turing Machines

CS254
Chris Pollett
Sep 6, 2006.

Outline

• Diagrams, examples, languages
• Recursive, RE, Functions
• Multi-Tape Turing Machines
• Time and Space classes
• Simulations

A Simple Turing Machine

• The transition function is the most important part
of a TM’s description.

• We will sometimes use a graphical notation to
describe TM’s and in particular this function.

• Given a in ∑ ∪{L, R} - {#}, define a machine Ma
={{s,h}, ∑, ∂, s}, where for each b in ∑ - {#},
∂(s,b) = (h, a). ∂(s, #) = R.

• That is, if a is a symbol, the only thing Ma does is
writes that symbol; if a is L or R then the only
thing Ma does is either move left or right.

Building Bigger TMs

• Given three TMs with a common alphabet: M, N,
P, we can build a new machine M´ which operates
as follows:
– Start in the initial state of M; operate as M until M

would halt, then
– if the currently scanned symbol is an a, start N
– if the currently scanned symbol is an b, start P.
– halt otherwise.

• Diagrammatically we write:
• As an exercise you should work out

what M´’s transition function would look like.

M N

P

a
b

More on Diagrams

• Similar to the if-else type diagram of the last slide
we can have diagrams like:
M ----> N
Notice there is no label on the arrow. This means that if

machine M is about to transition to its halt state h we
instead have it transition to the start state of N.

• We can also generalize the two branch
construction of the previous slide toany fixed
finite number of branches.

Examples

• We sometimes abbreviate MR as R and Ma as a.
We might also make abbreviations like Ra for the
machine which does MR then reading any symbol
write an a. Similarly, we might have RR or La.

• Let !a denote all the symbols in ∑ except a.
• Here is a machine R_ that scans right to the first

space >R
• Here is a machine L_ that scans left to the first

space >L

!_

!_

More Examples

• Here is a machine which when started with
a string _w on the tape halts with _w_w on
the tape.

>L_ R

_

 R_

a !=_
(R)2a(L_)2a

do twice

Computing with Turing Machines

• A configuration of M is a pair (q, #wav) where q is a state of the TM,
#w is the string to the left of the tape head, a is the current symbol
being read, and v is the tape square sto the right of the head that are
either in the input or have been seen so far during the computation.

• The initial configuration of M is (s, #x).
• A computation of M is a sequence of configurations of M

(s, #x) :- (q1, w1) :- … :- (qm, wm)
such that each configuration follows from the previous according to
M’s ∂. Read :- as yields.

• A computation halts if either the state yes or no is reach.
• A machine M accepts a languages L if it stops with state yes when x

is in the language and run forever otherwise.

 Recursive and Recursive Enumerable

• A language L is said to be recursively enumerable if it is
accepted by some Turing Machine

• A language L is said to be recursive if there is a Turing
machine M which run on x that is in L, M halts in the yes
state; and when run on an x not in L, M halts in the no
state.

Proposition If L is recursive then it is recursively
enumerable.

Proof. Suppose there is a M which decides L. We can make
an M´which accept L as follows: M´ behaves the same as
M except that whenever M is about to halt and enter a
“no” state M´ moves right forever and never halts.

Computing Functions

• Turing machines will be used to model algorithms, so we’ll often want
to be able to compute functions.

Definition. Let f be a function from (∑ -{_})* to ∑*. Let M be a TM with
alphabet ∑. We say M computes f if for any string x in (∑ -{_})*, M
on input x (written as M(x)) halts with f(x) written on the tape.

• If f can be computed by some M we say f is a recursive function or f
is computable.

• Our earlier example shows that the copying map is computable.
• We could code instances of networks as strings, and implement MAX

FLOW on a TM using our algorithm from Chapter 1. This would show
MAX FLOW is computable.

k tape machine

• One way you might try to improve the power of a TM is to allow
multiple tapes.

Definition A k-string TM, where k≥1 is an integer, is a quadruple
M=(K,∑,∂,s) where K,∑,s are as in the 1-tape case. Now, however, the
transition functions is a map
∂: K x (∑ ∪ {#})k-->(K∪{h, yes, no})x(∑ ∪{L,R})k

• Basically the heads on each tape can move independently of each
other.

• For example, with a two tape machine an algorithm for palindrome
testing is easy.
– We set up the transition function so it first copies the first tape input to the

second tape.
– Then it rewinds the first tape and leaves the second tape at the end of the

input.
– Then the first tape moves right while the second tape moves left and we

compare the two tape symbol by symbol. If they don’t match we hat in a
no. If the second tape gets back to the # then we accept.

TIME and SPACE classes.

• We shall use the k-tape model of TM as our basic model to study time
and space complexity.

• Let f:N --> N. We say that machine M operates within time f(n) if for
any input string x, the time require by M on input x is at most f(|x|).
Here |x| is the length of x as a string. We can make a similar definition
for space.

Defn. We say that a language L is in TIME(f(n)) (resp. SPACE(f(n))) if it
is decided by some k-tape TM in time f(n) (resp. space f(n)).

• For example, the algorithm for palindrome in time TIME(3(n+2)).
• You can show for a single tape machine for palindrome you need at

least time Ω(n2).
• How well can a 1-tape machine simulate a k-tape machine?

Simulating k-tape by 1-tape
Thm. Given any k-tape machine M that operates within time f(n), we can

construct a 1-tape machine M´operating within time O((f(n))2).
Proof. Let M=(K,∑,∂,s) be a k tape machine.
• The idea is M´ alphabet, ∑´, is going to be expanded to include symbol #´ to denote the

last used square of a tape. And we are going to add to ∑´ a symbol b for each symbol b
in ∑.

• A configuration of M can now be written as:
(q, #w1a1v1#´w2a2v2#´…#wkakvk#´)
• So except for the state which we can keep track of in K´ the rest of the state is a string

over ∑´.
• We will use new states K´ to keep track of the state of M during a simulation step.
• To simulate M, we first convert the input into the initial configuration of M viewed as a

string.
• Then to simulate a step we scan left to right the current configuration string, noting what

symbol is being read by each tape in our finite control.
• Next we rewind the tape and we then do passes again to update each tapes configuration.
• In the worst case we need to expand the number of tape square of each tape by 1. So we

could need (k(f(|x|)+1)+1, passes to simulate 1 step.
• So simulating f(|x|) steps take at most f(|x|)((k(f(|x|)+1)+1) times which is O((f(n))2).

