Monotone Circuit Lower Bounds.

CS254
Chris Pollett
Dec 4, 2006.

Outline

- Monontone Circuits
- Crude Circuits
- Erdos-Rado Lemma
- Bounds of False Positives/Negatives
- Razborov's Lower Bounds for Clique $_{\mathrm{n}, \mathrm{k}}$

Monotone Circuits

- We earlier saw that if we could prove super-polynomial lower bounds on circuit size for some NP language we would know that $\mathrm{P} /$ poly $\neq \mathrm{NP}$ and hence $\mathrm{P} \neq \mathrm{NP}$.
- Such lower bound results are hard to obtain.
- We also know that at least as far as the CVP goes monotone circuits are also P-complete, so in some sense are at least as hard as nonmonotone circuits.
- Maybe, it is easier to prove circuit lower bounds for monotone circuits?
- Is it possible to express any NP-complete problem so that it could even be solved by monotone circuits?

CLIQUE $_{\mathrm{n}, \mathrm{k}}$

- We have seen that whether a graph has a clique of size k is NP-complete. Call the n node version of this problem CLIQUE $_{n, k}$.
- One can also build monotone exponential size circuits to test if a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of n nodes has a clique of size k :
- The inputs g_{ij} correspond to the entries of the adjacency matrix for G.
- There are $\binom{n}{2}$ gates such g_{ij} and a given one is true iff there is an edge from i to j in G .
- For each subset S of V, with $|S|=k$, we have an AND of the $O\left(k^{2}\right)$ many gates which correspond to a clique on this set of vertices.
- We then have a big OR over the $\binom{n}{k}$ many different subsets S .
- This circuit thus has size $\mathrm{O}\left(\mathrm{k}^{2}\binom{n}{k}\right.$).

Razborov's Theorem

Thm. There is a constant c such that for large enough n all monotone circuits for CLIQUE $\mathrm{n}_{\mathrm{n}, \mathrm{k}}$ with $\mathrm{k}=(\mathrm{n})^{1 / 4}$ have size at least $2^{\mathrm{c}(\mathrm{n})^{\wedge}\{1 / 8\}}$.
Proof. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. Call a circuit which tests for whether any element in a family of subset $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}$ of V forms a clique a crude circuit. We'll denote a crude circuit by $\operatorname{CC}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)$. So the circuit we gave on the last slide is a crude circuit over subsets of V of size k . We are going to show how to approximate any monotone circuit for CLIQUE $\mathrm{n}_{\mathrm{n}, \mathrm{k}}$ by a crude circuit...

More on Crude Circuits

- Let $\mathrm{k}=(\mathrm{n})^{1 / 4}$ and let $l=(\mathrm{n})^{1 / 8}$.
- We will also make use of numbers p and M which will be fixed later but where p is also about $(\mathrm{n})^{1 / 8}$ and where M is about ($\mathrm{p}-1)^{l} l$!
- Notice $2\binom{\ell}{2} \leq \mathrm{k}$.
- Each crude circuit for our approximation will have X_{i} 's with $\left|\mathrm{X}_{\mathrm{i}}\right| \leq l$ and the total number of X_{i} 's will be some $\mathrm{m} \leq \mathrm{M}$.
- We approximate any monotone circuit C for $\mathrm{CLIQUE}_{\mathrm{n}, \mathrm{k}}$ inductively. (On the HW you can imagine building approximate circuits for each line of the circuit in the file.)
- In the base case, an input gate g_{ij} to C can be viewed as a crude circuit $\mathrm{CC}(\{\mathrm{i}, \mathrm{j}\})$.
- For the induction, let X and Y be two families of at most M nodes, and let $\mathrm{CC}(\mathrm{X})$ and $\mathrm{CC}(\mathrm{Y})$ be our approximation of C up to some gate which is either an AND or an OR...

Erdos-Rado Lemma

- We could try to approximate and OR as $\mathrm{CC}(\mathrm{X} \cup$ Y), but this may lead to a family of size $>\mathrm{M}$.
- A sunflower is a family of p sets $\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{p}}\right\}$ where P_{i} are called petals, each of cardinality $\leq l$, such that all pairs of sets in the family have the same intersection (the core of the sunflower).
Lemma (Erdos-Rado). Let Z be a family of more than $\mathrm{M}=(\mathrm{p}-1)^{l} l$! nonempty sets, each of cardinality l or less. Then Z must contain a sunflower of size p.

Approximate Circuits

- Plucking a sunflower is the act of replacing the sets in a sunflower by its core.
- Suppose $X \cup Y$ has more than M sets. Then it has a sunflower and we can replace that sunflower by its core and repeat until we get down to M subsets. Call this operation pluck $(X \cup Y)$.
- So we define the crude circuit for OR to be CC(pluck (X $\cup \mathrm{Y})$).
- We define the crude circuit for AND to be: $\operatorname{CC}\left(\operatorname{pluck}\left(\left\{\mathrm{X}_{\mathrm{i}} \cup \mathrm{Y}_{\mathrm{j}} \mid \mathrm{X}_{\mathrm{i}}\right.\right.\right.$ is in X and Y_{j} is in Y and $\left.\left.\left.\left|\mathrm{X}_{\mathrm{i}} \cup \mathrm{Y}_{\mathrm{j}}\right| \leq l\right\}\right)\right)$
- We next get bounds on the errors induced by our approximations...

False Positives and Negatives

- A positive example is a graph with $\binom{k}{2}$ edges connecting k nodes in all possible ways and with no other edso. So a circuit for CLIQUE ${ }_{\mathrm{n}, \mathrm{k}}$ should output true on all $\binom{n}{k}$ such examples.
- A negative example is the ulucome of the following experiment: Color the nodes with k-1 distinct colors. Then join by an edge any two nodes that are colored differently. This graph have any cliques of size k. So our circuit should output false on all $(\mathrm{k}-1)^{\mathrm{n}}$ such examples.
- A false positive is introduced by our approximation of an OR gate if when a negative example is fed to the inputs of our two original crude circuits for the inputs of the gate and both output false, but the approximation for the gate returns true. A false positive can also occur if for some coloring at least one of the constituent crude circuits returns false, but the approximation of their ANDs returns true.
- Similarly, a false negative is introduced by our approximation of a OR gate, if for some positive example at least one of constituent circuits output true, but the approximate OR computes false. A false negative can also occur if for some positive example both input crude circuits evaluate to true, but the approximation of their ANDs returns false.

Bounds on False Positives and False Negatives

Lemma I. Each approximation step introduces at most $\mathrm{M}^{2} 2^{-\mathrm{p}}(\mathrm{k}-1)^{\mathrm{n}}$ false positives.
Lemma II. Each approximation step introduces at most
$M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
Un the other hand, we have:
Lemma III. Every crude circuit either is identically false (and thus is wrong on all positive examples), or outputs true on at least half of the negative examples.
Proof Sketch III. If a crude circuit is not identically false, then it accepts at least those graphs which have a clique on some set Z of nodes with $|\mathrm{Z}| \leq l<(\mathrm{k})^{1 / 2} / 2$. But one can show that at least half of the colorings of the n vertices of G assign different colors to each of the nodes of Z , and so half of the negative examples involving Z will accept falsely.

Conclusion

- Define $\mathrm{p}=(\mathrm{n})^{1 / 8} \log \mathrm{n}, l=(\mathrm{n})^{1 / 8}$.
- So $\mathrm{M}=(\mathrm{p}-1)^{l} l!<2^{1 / 3(\mathrm{n})^{\wedge}\{1 / 8\}}$ for large n .
- Since each approximation step introduces $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives, if the final crude circuit is identically false, all positive examples must have been made false by these false negatives. So the circuit size is at least $\binom{n}{k} /\left(M^{2}\binom{n-\ell-1}{k-\ell-1}\right)$ This is at least $1 / \mathrm{M}^{2}(\mathrm{n}-l / \mathrm{k})^{l}$ which is at least $2^{\mathrm{c}(\mathrm{n})^{\wedge}\{1 / 8\}}$ for $\mathrm{c}=1 / 12$. On the other hand, Lemma III states there are at least $1 / 2(\mathrm{k}-1)^{\mathrm{n}}$ negatives examples on which the output is true. The Z's causing these errors must have been introduced as false positives and each step can at most introduce $\mathrm{M}^{2} 2^{-\mathrm{p}}(\mathrm{k}-1)^{\mathrm{n}}$ of them. So we conclude the original circuit must have had size $2^{\mathrm{p}-1} / \mathrm{M}^{2}>2^{\mathrm{c}(\mathrm{n})^{\wedge}\{1 / 8\}}$.

