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Monotone Circuits
• We earlier saw that if we could prove super-polynomial

lower bounds on circuit size for some NP language we
would know that P/poly≠NP and hence P≠NP.

• Such lower bound results are hard to obtain.
• We also know that at least as far as the CVP goes

monotone circuits are also P-complete, so in some sense
are at least as hard as nonmonotone circuits.

• Maybe, it is easier to prove circuit lower bounds for
monotone circuits?

• Is it possible to express any NP-complete problem so that
it could even be solved by monotone circuits?



CLIQUEn,k
• We have seen that whether a graph has a clique of size k is

NP-complete. Call the n node version of this problem
CLIQUEn,k .

• One can also build monotone exponential size circuits to
test if a graph G=(V,E) of n nodes has a clique of size k:
– The inputs gij correspond to the entries of the adjacency matrix for

G.
– There are          gates such gij and a given one is true iff there is an

edge from i to j in G.
– For each subset S of V, with |S|=k, we have an AND of the O(k2)

many gates which correspond to a clique on this set of vertices.
– We then have a big OR over the        many different subsets S.
– This circuit thus has size O(k2          ).



Razborov’s Theorem

Thm. There is a constant c such that for large
enough n all monotone circuits for CLIQUEn,k
with k = (n)1/4 have size at least 2c(n)^{1/8}.

Proof.  Let G=(V,E) be a graph. Call a circuit which
tests for whether any element in a family of subset
X1,…, Xm of V forms a clique a crude circuit.
We’ll denote a crude circuit by CC(X1,…, Xm ).
So the circuit we gave on the last slide is a crude
circuit over subsets of V of size k. We are going to
show how to approximate any monotone circuit
for CLIQUEn,k by a crude circuit...



More on Crude Circuits
• Let k = (n)1/4

  and let l=(n)1/8.
• We will also make use of numbers p and M which will be

fixed later but where p is also about (n)1/8 and where M is
about (p-1)ll!

• Notice 2      ≤k.
• Each crude circuit for our approximation will have Xi’s

with |Xi| ≤ l and the total number of Xi’s will be some
m≤M.

• We approximate any monotone circuit C for CLIQUEn,k
inductively. (On the HW you can imagine building
approximate circuits for each line of the circuit in the file.)

• In the base case, an input gate gij to C can be viewed as a
crude circuit CC({i,j}).

• For the induction, let X and Y be two families of at most
M nodes, and let CC(X) and CC(Y) be our approximation
of C up to some gate which is either an AND or an OR…



Erdos-Rado Lemma

• We could try to approximate and OR as CC(X ∪
Y), but this may lead to a family of size >M.

• A sunflower is a family of p sets {P1,...,Pp} where
Pi are called petals, each of cardinality ≤l, such
that all pairs of sets in the family have the same
intersection (the core of the sunflower).

Lemma (Erdos-Rado). Let Z be a family of more
than M=(p-1)ll! nonempty sets, each of cardinality
l or less. Then Z must contain a  sunflower of size
p.



Approximate Circuits

• Plucking a sunflower is the act of replacing the
sets in a sunflower by its core.

• Suppose X ∪ Y has more than M sets. Then it has
a sunflower and we can replace that sunflower by
its core and repeat until we get down to M subsets.
Call this operation pluck(X ∪ Y).

• So we define the crude circuit for OR to be
CC(pluck(X ∪ Y)).

• We define the crude circuit for AND to be:
CC(pluck({Xi ∪ Yj | Xi is in X and Yj is in Y and |Xi ∪ Yj | ≤ l}))

• We next get bounds on the errors induced by our
approximations…



False Positives and Negatives
• A positive example is a graph with       edges connecting k nodes in all

possible ways and with no other edges. So a circuit for CLIQUEn,k
should output true on all         such examples.

• A  negative example is the outcome of the following experiment: Color
the nodes with k-1 distinct colors. Then join by an edge any two nodes
that are colored differently. This graph have any cliques of size k. So our
circuit should output false on all (k-1)n such examples.

• A false positive is introduced by our approximation of an OR gate if
when a negative example is fed to the inputs of our two original crude
circuits for the inputs of the gate and both output false, but the
approximation for the gate returns true. A false positive can also occur if
for some coloring at least one of the constituent crude circuits returns
false,  but the approximation of their ANDs returns true.

• Similarly, a false negative is introduced by our approximation of a OR
gate, if for some positive example at least one of constituent circuits
output true, but the approximate OR computes false. A false negative
can also occur if for some positive example both input crude circuits
evaluate to true,  but the approximation of their ANDs returns false.



Bounds on False Positives and
False Negatives

Lemma I. Each approximation step introduces at most
M22-p(k-1)n

 false positives.
Lemma II. Each approximation step introduces at most
                    false negatives.
On the other hand, we have:
Lemma III. Every crude circuit either is identically false (and thus is

wrong on all positive examples), or outputs true on at least half of the
negative examples.

Proof Sketch III. If a crude circuit is not identically false, then it accepts
at least those graphs which have a clique on some set Z of nodes with
|Z|≤l < (k)1/2/2. But one can show that at least half of the colorings of
the n vertices of G  assign different colors to each of the nodes of Z,
and so half of the negative examples involving Z will accept falsely.



Conclusion
• Define p= (n)1/8log n,  l = (n)1/8.
• So M = (p-1)ll! < 21/3(n)^{1/8} for large n.
• Since each approximation step introduces

              false negatives, if the final crude circuit
is identically false, all positive examples must have been made
false by these false negatives. So the circuit size is at least
This is at least 1/M2(n-l/k)l which is at least 2c(n)^{1/8} for
c =1/12. On the other hand, Lemma III states there are at least
1/2(k-1)n  negatives examples on which the output is true. The Z’s causing
these errors must have been introduced as false positives and each step
can at most introduce M22-p(k-1)n of them. So we conclude the original
circuit must have had size 2p-1/M2 > 2c(n)^{1/8}.


