Classes with Randomness.

CS254
Chris Pollett
Nov. 1, 2006.

Outline

- Randomized Algorithms
- Randomized Complexity classes

Randomized Algorithms

- We now begin to investigate the power of the Turing Machines which have the ability to flip coins.
- To begin we consider some randomized algorithms for some common computational problems.

Determinants

- Recall the determinant of a_{n} matrix A is given by

$$
\operatorname{det} A=\sum \sigma(\pi) \prod_{1}^{n} A_{i, \pi(i)}
$$

- Here π is a permuation or ${ }^{i} 1_{1}^{1}, ., n$ nand $\sigma(\pi)$ is 1 if π is a product of an even number of transpositions and -1
- Forherwise. its determinant is ad-bc.
- Determinants are useful for many things: Computing volumes, inverting matrices, etc.
- To compute a determinant of an $\mathrm{n} \times \mathrm{n}$ matrix one typically uses Gaussian elimination to convert the matrix into an upper triangular form. The determinant then becomes the product of the diagonals.
- So the determinant can be computed in polynomial time.

Determinants and Matchings

- Given a bipartite graph $\mathrm{G}=(\mathrm{V} \cup \mathrm{U}, \mathrm{E})$ we can compute the determinant of its adjacency matrix A^{G}.
- For this matrix a_{ij} entry is x_{ij} (a symbolic variable) if there is an edge from the i th element of V to the j th element of U . It is 0 otherwise.
- The only nonzero terms in the determinant correspond to perfect matchings in G.
- Since all of the elements in V and U appear at once, the terms we get in this symbolic matrix don't cancel.
- So G has a matching iff this symbolic determinant is nonzero.
- We would thus like to be able to figure out if a symbolic determinant is identically zero.
- The idea we'll use is to fill in random numbers for the variables and see if we get zero.

Lemma

Let $\pi\left(\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{m}}\right)$ be a polynomial, not identically zero, in m variables each of degree at most d. Let $\mathrm{M}>0$ be an integer.
Then the number of m-tuples $\left(x_{1}, . ., x_{m}\right) \in\{0,1 \ldots, M-1\}^{m}$ such that $\pi\left(x_{1}, .\right.$. , $\left.\mathrm{x}_{\mathrm{m}}\right)=0$ is at most $\mathrm{mdM}^{\mathrm{m}-1}$.
Proof. By induction on m. When $\mathrm{m}=1$, the lemma says that no polynomial of degree $\leq d$ can have more than d roots which is just the Fundamental Theorem of Algebra. By induction suppose the result is true for $\mathrm{m}-1$ variables. Suppose $\pi\left(\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{m}}\right)$ is an m variable polynomial and it evaluates to 0 at some point in our domain. The highest degree coefficient of x_{m} is then either 0 or not. This coefficient is a polynomial in just $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{m}-1}$. If it is zero by our hypothesis, this can happen for at most one of $(\mathrm{m}-1) \mathrm{dM}^{\mathrm{m}-2}$ places. Since in our domain we have M choices for x_{m}, the total number of places where the lead term is zero is at most $(\mathrm{m}-1) \mathrm{dM}^{\mathrm{m}-1}$. The remaining terms in π define a degree $\leq \mathrm{d}$ polynomial in x_{m} so can have at most d roots for each combination of $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{m}-1}$. This gives at most $\mathrm{dM}^{\mathrm{m}-1}$ more roots. Adding these two estimates gives the result.

A Perfect Matching Algorithm

1. Choose m random integers i_{1}, \ldots, i_{m} between 0 and $M=2 m$.
2. Compute the determinant A , $\operatorname{det} \mathrm{A}^{\mathrm{G}}\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{m}}\right)$ by Gaussian elimination.
3. If it is not 0 then reply G has a perfect matching
4. Otherwise reply it does not have a perfect matching.

- Notice this algorithm might give a false negative with probability less than half.
- By repeating the experiment multiple times we can reduce the probability to as small as we want.
- We already had an algorithm for matching; nevertheless, the above solves the more general problem of checking when a symbolic determinant is 0 , for which no deterministic p-time algorithm is known.

Random Walks for SAT

- Randomized algorithms can also be used in the context of SAT. Consider:

1. Start with any truth assignment T , and repeat the following r times:

- If there is no unsatisfied clause output "Satisfiable", halt.
- Otherwise, take any unsatisfied clause; pick any of its literals at random and flip its value

2. After r repetitions reply "formula is probably unsatisfiable"

- The above algorithm is called a "random walk" algorithm -changing a variables value can be viewed as taking a step on the boolean hypercube of truth assignments.
- If we choose r big enough this algorithm is likely to succeed in finding a truth assignment if there is one.
- By the coupon collector problem if $r=2^{n} n$ we can expect to have tried all possible truth assignments.
- This is probably a big overestimate. What is a reasonable r however? To be continued next day...

