
HW 5

SJSU Students

December 11, 2006

1 A language is finitely simple if it’s the union

of simple languages. Show that if a finitely

simple language is NP-complete, then P=NP

A language is simple if all strings in it come from {w}∗, where w ∈ {0,1}∗. Let
L be finitely simple. So the strings in L come from (w1)

∗ ∪ . . . (wm)∗, which
is a regular expression. Since L is NP -complete, there is some reduction R
so that x ∈ SAT iff R(x) ∈ L. We can assume WLOG that if R(x) is in
L((w1)

∗∪. . . (wn)∗)−L. Given a instance φ of SAT we use the same algorithm
as in the unary case from class to solve it in P . This time though our hash
function H(t) = R(φ(t)) for the R above. We notice that all values of H(t)
are at most the length of the time of the reduction so of length bounded by
some polynomial p(n). Since an output value must be of the from (wi)

∗ for
some i from 1 to m. The total number of distinct values H could output is
bounded by a polynomial. The remainder of the argument is the same as for
the algorithm we did in class.

1

2 Exhibit an oracle set A with respect to

which UP is different from P, and hence,

with respect to which there exist one way

functions.

Consider the language

L =

{0n|There is an x in B with |x| = n}

and let B be the oracle we used in class to show NPB is different from PB.
The construction of B from class adds at most one string at any particular
length. So if we want to check if 0n is the L a NTM machine M could guess
a string x of length n and check if it is in B. It should accept iff x is in B.
As we just said, B has at most one of length n, so at most one path in M
will accept, so this will be a UPB algorithm.

3 Exhibit an oracle A under which NP
⋂

coNP has complete problems, yet NPA 6=
PA.

Note that if NPA = coNPA, then NPA
⋂

coNPA = NPA. So SAT will
be NP

⋂
coNP -complete. So we will construct an oracle such that NPA =

coNPA and NPA 6= PA.
This can be done by constructing oracle A in even and odd stages such that
A =

⋃
i Ai Our construction has the property that Ai contains all strings in A

of length ≤ i. We will also have an exception set X, which is also constructed
in stages Xi so that X := ∪iXi. At stage i, we will ensure that it has size at
most

∑i
j=1 jlogj < 2i/2.

For stages of the form 2i we encode validity for strings of length i. We
do not change X. i.e., X2i = X2i−1. For each y of length n, if y is a valid
formula whose code is of length n, then we pick an x of length n so that the
concatenated string yx is not in X2i. This is possible since |X2i| < 22i/2 = 2i.

2

We add the yx to A2i. Notice given the problem of determining if y is valid
an NPA machine could guess x and check if yx was in A, so this step does
ensure NPA = coNPA.

The stages of the form 2i + 1 are used to force that NPA 6= PA. These
stages we add elements to the set in exactly the same way we did for the
oracle in class.

3

