
CS 254 Homework 3

SJSU Students

November 13, 2006

Problem 1

For this problem, define the following two classes for any proper function f :
HT

f = {〈M, x〉|M accepts input x after at most f(|x|) steps}
HS

f = {〈M, x〉|M accepts input x after using at most f(|x|) space}
I will give a specific f for each part of the problem.

(a) Let f(n) = 22n
. HT

f is decidable, since a Universal Turing machine with no time

bounds can simulate any machine-input pair for 22n
steps to decide whether or not it

is in HT
f . The proof of the time hierarchy theorem tells us that HT

f 6∈ TIME(f(n
2
)) =

TIME(22
n
2). This class contains EXP (since the exponential term in the exponent grows

faster than any polynomial term in the exponent), and so HT
f 6∈ EXP.

(b) Let f(n) = 2n2
. From the proof of the time hierarchy theorem, we know that

HT
f ∈ TIME(f(n)3) = TIME(23n2

). We can see that TIME(23n2
) ⊆ TIME(2n3

) ⊆ EXP,

and so HT
f ∈ EXP. Furthermore, the proof of the time hierarchy theorem tells us that

HT
f 6∈ TIME(f(n

2
)) = TIME(2

n2

4). This class contains E (since the quadratic term in

the exponent grows faster than any linear term in the exponent), and so HT
f 6∈ E.

(c) Let f(n) = 2n. From the proof of the time hierarchy theorem, we know that HT
f ∈

TIME(f(n)3) = TIME(23n). Since TIME(23n) is clearly contained in E, we know that
HT

f ∈ E. Furthermore, the proof of the time hierarchy theorem tells us that HT
f 6∈

TIME(f(n
2
)) = TIME(2

n
2). This class contains P (since an exponential term grows

faster than any polynomial term), so we know that HT
f 6∈ P.

(d) Let f(n) = n. Notice that the first lemma in the proof of the time hierarchy
theorem (from the lecture notes) can be modified to show that HS

f ∈ SPACE(f(n)) =
SPACE(n). To do this, we construct the same Universal Turing machine described in
the lemma, and perform the same simulation. The only difference is that we use the
”alarm clock” tape to keep track of how many tape squares the simulation has used,
rather than how many steps the simulation has taken. Notice that the initial setup of
the simulation takes O(f(n)) time, and thus it must use O(f(n)) space, since a Turing
machine cannot use more space than time. We also need to be careful of how many steps

1

our 1-tape simulation of a k-tape machine takes; however, it is clear from the theorem
which defines such a simulation that the space complexity is roughly k(f(|x|)). Thus,
the total space used is O(f(n)), which gives HS

f ∈ SPACE(n) ⊆ PSPACE as desired.

To show that HS
f 6∈ L, we use a proof similar to that of the second lemma in the proof

of the time hierarchy theorem. Specifically, we suppose that MHS
f

decides HS
f while

using only f(n
2
) space, and we construct a diagonalizing machine DM that computes

DM(〈M0〉): if MHS
f
(〈M0, M0〉) accepts then reject; else accept. By the same argument

in the proof from the lecture notes, the computation DM(〈DM〉) gives a contradiction,
so MHS

f
cannot exist, and so HS

f 6∈ SPACE(f(n
2
)) = SPACE(n

2
). This class contains L

(since a linear term grows faster than a logarithmic term), and so HS
f 6∈ L.

Problem 2

The proof is by contradiction. Let k be some number greater than 0 such that NP =
SPACE(nk). Since we know that NP is closed under polynomial-time reductions, it must
be the case that SPACE(nk) is as well. Let L ∈ SPACE(n2k) be some language that
is not in SPACE(nk); we know such a language exists because of the space hierarchy

theorem. Now let L′ = {(x, α|x|2)|x ∈ L}, where α is just some arbitrary symbol. Notice
that L′ ∈ SPACE(nk), since the machine that decides L in SPACE(n2k) will decide
L′ in SPACE(nk) as long as it ignores the αs. However, there is a trivial polynomial-

time reduction from L to L′ (on input x, just output (x, α|x|2)), which implies that L
is in SPACE(nk) under the assumption that SPACE(nk) is closed under polynomial-
time reductions. Since we know L 6∈ SPACE(nk) from the construction of L, we have a
contradiction, and thus there is no k greater than 0 such that NP = SPACE(nk).

Problem 3

First, define the following four classes. Note that in each, M is a Turing machine, x is
an arbitrary input string, and k is a natural number.
HP = {〈M, x, k〉|M is a DTM accepts x in at most |x|k steps }
HNP = {〈M, x, k〉|M is an NTM that accepts x in at most |x|k steps }
HPSPACE = {〈M, x, k〉|M is a DTM accepts x after using at most |x|k space }
HNL = {〈M, x, k〉|M is an NTM that accepts x after using at most log(|x|k) space }

Claim 1: HP is P-complete under log-space reductions.
Proof: First, we must show that HP ∈ P. To see this, notice that nk is a proper complex-
ity function, so can be computed on input x in time O(|x|k). We can use this function
as a clock on a Universal Turing machine that simulates M on x for |x|k steps. We do
this using the same simulation used in the proof of the first lemma from the proof of
the time hierarchy theorem from the lecture notes. This can be done from the notes in
polynomial time in |x|, and so HP ∈ P. Now let L be any language in P. To complete the
proof, we must show that L is log-space reducible to HP . Let ML be the machine that
decides L in time nk for some natural number k. Define RL, the machine that performs

2

cpollett
Text Box
As pointed out on the discussion board, there is a bug in the solution below.
There is a 1pt bonus for saying what the bug is and correcting it.

the reduction, as follows:

3

On input x:

1. Write an encoding of ML on the output tape.

2. Write x on the output tape.

3. Write the binary representation of k on the output tape.

Notice that steps 1 and 2 require no space on RL’s work tape, because we can “hard
wire” RL to write down the encodings for these steps. Similarly, step 2 is just copying
from the input tape to the output tape, which also requires no work tape space. So, RL

actually performs a constant-space reduction (which is still a log-space reduction). Now,
for any x ∈ L, ML will accept x in at most |x|k steps (by definition), and so RL(x) ∈ HP .
Likewise, if RL(x) ∈ HP , this means that ML will accept x in at most |x|k steps, and so
x ∈ L. Thus, the reduction is sound and complete, and so HP is P-complete.�

Claim 2: HNP is NP-complete under log-space reductions.
Proof: HNP ∈ NP for the same reasoning as in Claim 1. The only difference is that
the UTM must take non-deterministic steps when simulating one step of M , but this
does not add any time complexity. Also, the log-space reducer RL is exactly the same,
and the reduction is valid for the same reasons; note that RL does not need to be non-
deterministic, and is still constant space.�

Claim 3: HPSPACE is PSPACE-complete under log-space reductions.
Proof: HPSPACE ∈ PSPACE for the same reasoning as in Claim 1. The only difference
is that we’re interested in the space complexity of the UTM rather than the time com-
plexity, but this is still polynomial. We have the UTM mark off |x|k many tapes on its
main tape (this could be done, for instance, by replacing spaces on the main tape with
a new kind of space symbol with a dot under it). If the simulation ever goes off this
marked off area the machine rejects, we now no longer use the “alarm clock” that we
did in the first two parts above. Again, the log-space reducer is the same as in Claim 1,
and the reduction is valid for the same reasons.�

Claim 4: HNL is NL-complete under log-space reductions.
Proof: For this proof, the reduction is the same as in the previous proofs, but we need to
be a little more careful with showing that HNL ∈ NL. The non-deterministic Universal
Turing machine that decides if 〈M, x, k〉 ∈ HNL has 4 tapes. The input and output tapes
are exactly the same as M ’s. One tape is used to keep track of M ’s state, and this is
clearly logarithmic in |〈M〉|. The final tape keeps track of M ’s work tape (we are assume
without loss of generality that M is a one tape machine). Each of these tapes has maxi-
mum length at most log(|x|k), and so the simulator’s final tape has length O(clog(|x|k))
= O(log(|x|ck)). Thus, HNL is definitely in NL, and so this class is NL-complete.�

4

