
Server-Side Perl

CS174
Chris Pollett
Oct 30, 2006.

Outline

• Pattern Matching
• File I/O
• Common Gateway Interface
• Example server side script
• Query String Format
• Cookies

Pattern Matching
• Recall we discussed regular expressions and pattern

matching when we talked about Javascript.
• Javascript’s version of these concepts were actually based

on the notions from Perl.
• Patterns in Perl a delimited by slashes.
• Nonspecial characters match themselves:

/snow/ # matches the string “snow”
• A period matches any character other than a newline. So

/snow./ matches snowy and snows
• [] are used to indicate the OR of its content [abc] matches

either a or b or c.
• ^ - matches the start of a line
• $ - matches the end of a line

More Pattern Matching
• \s -- matches any whitespace character
• \d matches any digit
• {} use to indicate number of occurrences of pattern.

/xy{4}z/ matches xyyyyz. An SSN could be matched as
/\d{3}-\d{2}-\d{4}/

• *, +, ? - are the 0 or more, 1 or more, and 0 or 1 repetition
operators as in Javascript.

• Modifiers can be attached to patterns as in Javascript. For
instance, x, i.

• The string against which a pattern is matched is by default
$_ . For example,
if(/rabbit/) {print “there is a rabbit in $_ \n”;}

• To match against some other string one can use the binding
operator =~. For example, if($str =~ /rabbit/){…}

• Split can also use patterns: @word = split(/[.,]\s*/, $str);

Remembering Matches and
Substitutions

• The part of a string that matched part of a pattern can be
saved in implicit variables for future use. For example,
“4 July 1776” =~ /(\d+) (\w+) (\d+)/;
print “$2 $1, $3\n”; # prints July 4, 1776

• Sometimes is it convenient to be able to reference the parts
of the string that preceded the match, the part that matched,
or the part that followed the match.

• These are available in the variables: $`, $&, and $’
respectively.

• As in Javascript s is used as the substitution operator and g
is used to indicate one wants to do a global substitution:

$_ = “Say it ain’t so”;
s/ain’t/ is not/g;

File I/O
• As we said a couple of classes ago, files are referenced through

program variables called filehandles.
• Filehandle names do not begin with special characters (like $’s) and

are typically written in upper-case.
• The open function is used to associate an OS file with a particular file

handle.
• In opening a file, we also have to say how we are going to access it:

< -- means the filehandle should be for input
> -- means the filehandle should be for output (creates the file if does

not exist. Starts writing at the beginning of the file)
>> -- means one should append to the file
>+ -- means input from and output to the same file.

• As an example, we could create a file and write to
it using:
open(OUT, “>myfile”) or die “Error opening the file for

writing $!”;
print OUT “some stuff”; close OUT;

More File I/O

• Similarly, we can open a file for reading using:
open(IN, “<myfile”);
$first_line = <IN>;
close IN;

• There are also command
read(filehandle, buffer, length [, offset]);
and
seek(filehandle, offset, base)
#base can be one of 0 (start of file), 1 (current pos), 2 (end

of file)
#offset can be positive or negative and indicates bytes.

Common Gateway Interface
• We are now going to talk about Perl in the context of web programming.
• We would like our Perl programs to run on the server when a client browser

makes a request for a page:

• To accomplish this the web server is typically configured to recognize certain
file extensions as being for scripts (Ex: .cgi).

• The server might also expect files from a certain directory to be scripts (Ex:
cgi-bin).

• When the server receives a request for such a file, in the traditional approach,
it would fork a process and set up the environment variables for this process
according to the Common Gateway Interface.

• It would then run the Perl application and echo the results back to the Client.
• As forking can be slow, modern approaches based on mod_perl do a similar

idea but within a thread of the web-server.

Client
(web browser)

Web
Server

CGI
Perl
App

Server

Example Server Side Script
#!/usr/bin/perl
#The line above says what app to use to run
#This script
print “ Content-type: text/html \n\n”;
although we don’t send the status line,
general and response headers, it does need
to give the entity headers
print <<HTML;
<html><head><title>First CGI</title></head>
<body><h1>My first CGI program!</h1>
<p> The query string was $ENV{‘QUERY_STRING’}</p>
</body></html>
HTML

Query String Format

• Form data is often sent in the QUERY_STRING
environment variable indicated by the last example.

• Therefore, it is useful to be able to parse this variable to
get out the name value pairs sent in the form.

• The general format of the query string looks like:
name1=value1&name2=value2 …

• Special characters are replaced with % followed by their
ASCII code. Ex %20 is a space, %21 is !, etc.

• Sometimes spaces are replaced with +. This often is done
with search engines.

Getting the Data sent from a
Form

$request_method = $ENV{‘REQUEST_METHOD’};
if($request_method eq “GET”)
{

$query_string = $ENV{‘QUERY_STRING’};
}
elsif($request_method eq “POST”)
{

read(STDIN, $query_string,$ENV{‘CONTENT_LENGTH’});
}

else {exit(1);}

Cookies

• Sometimes it is useful to remember a client when
it comes back.

• To do this one can use the HTTP-Cookie protocol.
• The Server can send as one of its response

headers:
Set-Cookie: name=value; expires=some date; path=

some path; domain= some_domain;
• When the Client comes back, it will send the

cookie as part of its request header as:
Cookie: name=value

