Server-Side Perl

CS174
Chris Pollett
Oct 30, 2006.

Outline

Pattern Matching

File I/0

Common Gateway Interface
Example server side script
Query String Format
Cookies

Pattern Matching

Recall we discussed regular expressions and pattern
matching when we talked about Javascript.

Javascript’s version of these concepts were actually based
on the notions from Perl.

Patterns in Perl a delimited by slashes.

Nonspecial characters match themselves:
/snow/ # matches the string “snow”

A period matches any character other than a newline. So
/snow./ matches snowy and snows

[] are used to indicate the OR of i1ts content [abc] matches
either a or b or c.

A - matches the start of a line
$ - matches the end of a line

More Pattern Matching

\s -- matches any whitespace character
\d matches any digit

{} use to indicate number of occurrences of pattern.
/xy{4}z/ matches xyyyyz. An SSN could be matched as
Nd{3}-\d{2}-\d{4}/

* 4+, ? - are the O or more, 1 or more, and O or 1 repetition
operators as in Javascript.

Moditiers can be attached to patterns as in Javascript. For
nstance, X, 1.

The string against which a pattern 1s matched 1s by default
$_ . For example,

if(/rabbit/) {print “there is a rabbit in $_ \n”;}

To match against some other string one can use the binding
operator =~. For example, if($str =~ /rabbit/){...}

Split can also use patterns: @word = split(/[.,]\s*/, $str);

Remembering Matches and
Substitutions

The part of a string that matched part of a pattern can be
saved 1n implicit variables for future use. For example,

“4 July 1776” =~ /(\d+) (\w+) (\d+)/;

print “$2 $1, $3\n”; # prints July 4, 1776
Sometimes 1s it convenient to be able to reference the parts
of the string that preceded the match, the part that matched,
or the part that followed the match.

These are available in the variables: $°, $&, and $’
respectively.

As 1n Javascript s 1s used as the substitution operator and g
1s used to indicate one wants to do a global substitution:

$_ =“Say it ain’t s0”;

s/ain’t/ is not/g;

File I/0O

As we said a couple of classes ago, files are referenced through
program variables called filehandles.

Filehandle names do not begin with special characters (like $’s) and
are typically written in upper-case.

The open function is used to associate an OS file with a particular file
handle.

In opening a file, we also have to say how we are going to access it:
< -- means the filehandle should be for input

> -- means the filehandle should be for output (creates the file if does
not exist. Starts writing at the beginning of the file)

>> -- means one should append to the file
>+ -- means input from and output to the same file.
As an example, we could create a file and write to
1t using:
open(OUT, “>myfile”) or die “Error opening the file for
writing $!”;
print OUT *“some stuff”; close OUT;

More File 1/0

* Similarly, we can open a file for reading using:
open(IN, “<myftile”);
$first_line = <IN>;
close IN;
e There are also command
read(filehandle, buffer, length [, offset]);
and
seek(filehandle, offset, base)

#base can be one of O (start of file), 1 (current pos), 2 (end
of file)

#offset can be positive or negative and indicates bytes.

Common Gateway Intertace

We are now going to talk about Perl in the context of web programming.
We would like our Perl programs to run on the server when a client browser

makes a request for a page: Server
Client | Web |, CGI** Perl
(web browser) Server App

To accomplish this the web server is typically configured to recognize certain
file extensions as being for scripts (Ex: .cgi).

The server might also expect files from a certain directory to be scripts (Ex:
cgi-bin).
When the server receives a request for such a file, in the traditional approach,

it would fork a process and set up the environment variables for this process
according to the Common Gateway Interface.

It would then run the Perl application and echo the results back to the Client.

As forking can be slow, modern approaches based on mod_perl do a similar
idea but within a thread of the web-server.

Example Server Side Script

#!/usr/bin/perl

#The line above says what app to use to run
#This script

print “ Content-type: text/html \n\n”;

although we don’t send the status line,

general and response headers, it does need

to give the entity headers

print <<HTML;

<html><head><title>First CGI</title></head>
<body><h1>My first CGI program!</h1>
<p> The query string was SENV{‘QUERY_STRING’ }</p>
</body></html>

HTML

Query String Format

Form data 1s often sent in the QUERY_STRING
environment variable indicated by the last example.

Therefore, it 1s useful to be able to parse this variable to
get out the name value pairs sent in the form.

The general format of the query string looks like:
name,=value,&name,=value, ...

Special characters are replaced with % followed by their
ASCII code. Ex %20 1s a space, %21 1s !, etc.

Sometimes spaces are replaced with +. This often 1s done
with search engines.

Getting the Data sent from a
Form

$request_method = SENV{‘REQUEST_METHOD};
if($request_method eq “GET”)
{
$query_string = SENV{‘QUERY_STRING’};
¥
elsif($request_method eq “POST”)

{
read(STDIN, $query_string, SENV{‘CONTENT_LENGTH’});

}
else {exit(1);}

Cookies

e Sometimes it 1s useful to remember a client when
1t comes back.

e To do this one can use the HTTP-Cookie protocol.

e The Server can send as one of its response
headers:

Set-Cookie: name=value; expires=some date; path=
some path; domain= some_domain;

e When the Client comes back, it will send the
cookie as part of its request header as:

Cookie: name=value

