
More PHP

CS174
Chris Pollett

Nov 27, 2006.

Outline

• More on PHP Arrays
• Functions
• Variable Scope
• Pattern Matching
• Form Handling
• File Handling
• Cookies
• Sessions

More on PHP Arrays
• Last Wednesday, we saw the basics of creating/accessing an array in

PHP: $arr=array(1,2,3); echo $arr[2]; /*would print 3 */
• Recall also $carr = array(); //create an empty array
• Arrays in PHP are similar to Perl hashes.
• The above way to create $arr can also be written in PHP as:

$arr = array(0=> 1, 1=>2, 2=>3);
• Like hashes we can do things like $arr = array(“joe”=> 5, “mary”

=>6);
• To get the keys and values we can use the functions: $keys =

array_keys($arr) and $values = array_values($arr);
• Arrays can also be created by an assignment: $barr[1] = 5; // creates

array $barr if doesn’t exist
• If did the assignment $barr[] = 6; Then since the argument to [] wasn’t

specified PHP will assign $barr[2] = 6;

Yet More on PHP Arrays
• As arrays are like Perl hashes, you can call the unset

function on the element in an array: $list= array(2,4,6,8);
unset($list[2]);

• Some useful array functions: count -- returns the number
of elements in an array, is_array, in_array, implode,
explode, sort, rsort, asort, arsort, ksort, krsort.

• To see how implode/explode work consider:
$str=“this is a string”;
$words = explode(“ ”, $str); /*acts like split except here the first

argument is a string rather than a regular expression. So words is
an array(“this”, “is”, “a”, “string”). PHP has a split function but
not as fast, since arg might be a regular expression. */

$str2 = implode(“ ”, $words); //undoes the explode.

Iterating Through Arrays
• The function current can be used to return a pointer to the current

element in an array. The next function can be used to advance this
pointer and get its value:
$cities = array(“San Jose”, “San Diego”);
echo current($cities); // prints San Jose
$another = next($cities); // $another is now San Diego;

• There are also the functions each, prev, end, and reset to facilitate
moving through array.

• The function each is similar to next except after advancing the current
pointer, it returns the old pointer as a two element array consisting of a
key/value pair.

• We saw last day that one can iterate through arrays using foreach($arr
as $val){…}

• PHP also supports code like
$lows = array(“Mon” => 23, “Tue” => 18);
foreach($lows as $day =>$temp)
{echo “$day lows were $temp”;}

Functions
• The general format of a PHP functions is:

function name([parameter]){…}
For example,
function inc($i){return $i++;}

• A return value can be sent back using a return call as in many
programming languages.

• You can modularize your code by putting several function definitions
into a file and then use the include function to include them into any
document that needs those functions.

• Parameters are passed by value. So the function call:
$b = inc($a); // leaves the value of $a unchanged
• You can call by reference by using an ampersand:
$b =inc(&$a); //here the value of $a is changed (one is added to it).
• You can also create functions with pass by reference parameters:

function inc(&$i){…}

Variable Scope
• The default scope of a variable in PHP is only within the function that it is used. That is

local scope:
$bob = 5;
function test()
{ $bob=6; echo $bob; //echo’s 6}
test();
echo $bob; //echo’s 5

• In order to access global variables within a local function one would need to use the
global declaration:
 $bob =5;

 function test()
 {
 global $bob; # if did not do bob would be NULL
 echo $bob;
 }
 test();
• PHP also supports static local variables. These preserve states between function calls:

function addone () {static $count =0; echo $count++;}

Pattern Matching

• PHP supports Perl style regular expression
and POSIX regular expressions.

• For example,
$fruits = preg_split(“/:/”, “apples:oranges”);
//would act like Perl’s split
• preg_match acts like acts like Javascript

match.

Form Handling

• As we saw last day in the test examples done on
my machine, PHP makes available several
important global variables which are useful for
server side scripts.

• The phpinfo() function can be used to find out all
of these globals.

• To process forms the most useful global variables
are: $_GET and $_POST.

• For instance, $_GET[“bob”] returns the value of
the form variable bob that was HTTP GET’d to
the server.

File Handling

• Since PHP is a server side technology it is allowed
to create, read, and write file on the server’s
filesystem.

• To open a file one can do:
$fileHandle = fopen(“my.dat”, “r”);
// one can also open as r+, w+, a, a+
$file_string = fread($fileHandle, filesize(“my.dat”));
fclose($fileHandle);
• Other file I/O functions are: file, fgets, fwrite

Cookies

• Cookies can be set using the setcookie
function:
setcookie(name, value, expires);

• This should be done before output is
produced by your script.

• To access the value of a cookie returned
from a browser you can use the
$_COOKIES array.

Sessions

• Like Java servlets, PHP supports session
management.

• To start a session one calls start_session();
• Then to set/get values of the session one

uses the global array variable $_SESSION:
$_SESSION[“test”]=37; /* sets the test
session variable*/
echo $_SESSION[“test”];

