
More Perl

CS174
Chris Pollett
Oct 25, 2006.

Outline

• Loops
• Arrays
• Hashes
• Functions

Selection Redux

• Last day we learned about how if-else
works in Perl.

• Perl does not have a switch statement

• Like Javascript, Java, and C, Perl has while and for loops:
while(condition)
{
 #do something
}

• The implicit variable $_ is often used in conjunction with
looping. It is the default operator in a function call with no
arguments. Consider:

while(<STDIN>) #default target of <> is $_
{
 print; chomp; if($_ eq “Orange”) #print and chomp are applied to $_
 {
 print “Juice\n”;
 }
}

Loops

for(initial expr; control expr; incr expr)

{

 #do something

}

Arrays
• A list in Perl is an ordered sequence of scalar values.
• A list literal is a parenthesized list of scalar values: (3.14, “circle”, 17)
• An array in Perl is a variable used to store a list: @arr = (“good”,

“bad”, “ugly”);
• Assigning one array to a second array, @a=@b; actually creates a new

array object and copies the members.
• When an array is assign to a scalar, it’s length is returned. Ex: $len =

@arr;
• One can do list assignments in Perl:
($a, $b, $c, @d) = (“hi”, “there”, “you”, “too”, “are”, “here”);
• Dereferencing arrays is similar to other languages: @b= (“a”, “b”, “c”)

$a = $b[1]; #here @b is an array, $a gets value “b”.

More on Arrays

• Suppose we did the commands:
@list = (2, 4, 6);
$list[27] =8;

• The list would now have four elements but
length 28 (elts 3 through 26 would be
vacant).

• The last subscript of a list can be found as
$#list. So the length of a list is $#list+1.

Yet More on Arrays
• We can cycle over the elements in a list using foreach:

@list = (1, 2, 3);
foreach $value (@list)
{

print “Value: $value”;
}

• Perl also has several useful functions for manipulating
arrays: shift, unshift (for the front of an array), push, pop
(back of array), split, sort.

• For example,
$str = “larry curly moe”;
@arr = split(“ ”, $str); # @arr = (“larry”, “curly”, “moe”)

• The function qw can be used to quickly create an array of
strings:

@arr = qw(larry curly moe); #does same as above

An example

$index = 0;
while($name = <>)

#above we are getting arguments from the command line
{
 $names[$index++] = uc($name); #upper case $name
}
print “\nThe sorted list of names is:\n\n\n”;
foreach $name (sort @names)
{
 print “$name \n”;
}

Hashes
• Associative arrays are arrays in which each data element is paired with

a key, which is used to find the element.
• In Perl, associative arrays are called hashes.
• hashes differ from arrays in that:

– one looks up elements in a hash using a string
– the elements in a hash are not stored in order of subscript

• Here is an example of making a hash:
%kids_ages = (“John” => 17, “Sammy” => 12, “Sally” =>4);

• To get someone’s age out of this hash we could do:
$john_age = $kids_ages{“John”};

• To remove an entry from a hash one can do:
delete $kids_ages{“Sammy”};

• To delete the hash one can use
%kids_ages =(); #or
undef %kids_ages;

More on Hashes
• To check if a values is in a hash one can use the exists operator:

if(exists $kids_ages{“bob”}){… }
• To print out a hash one could do things like:

foreach $child (keys %kids_ages)
{

print “Child $child has age $kids_ages{$child}\n”;
}

• To get an array of values we could do things like:
@ages = values %kids_ages;
print “The ages are @ages”;

• One a hash is embedded in double quotes its keys are not interpolates
into the string, to get the keys as well you need to first assign the hash
to a list then embed the list.

• Perl has a predefined variable %ENV that store the OS’s environment
variables.

References
• A reference is a scalar value that reference another variable or literal.

So it the value of a reference is an address (i.e., its like a pointer in C,
but safer). As an example:
$age = 42;
$ref_age = \$age;
@arr = (1, 2, 3);
$ref_arr = \@arr;

• To get a reference to an array literal one puts the list in square
brackets:
$ref_sal = [50000, 29999, 10000];

• To get a reference to a hash literal one does:
$ref_ages ={‘Curly’ =>31, “More” => 29};

• To dereference a reference one can add another $, @, or %.
• So $$ref_age is 42; whereas, $ref_age is an address; similarly,

@$ref_arr is the array that is referenced by $ref_arr.
• For arrays and hashes one can do things like:

$ref_arr->[0];
$ref_ages->{‘Curly’};

Functions
• A Perl function definition consists of a function header and a block of

code that decribes its action.
• A function header consists of the keyword sub together with the name

of the function.
• The block is then a sequence of statements in {}.
• As an example, consider:

sub product1
{

return $first*$second;
}

• The above function returns a value explicitly.
• If no return call is explicitly made then the value returned by a

function is the value of the last expression evaluated.
• So the next function is equivalent:

sub product2 { $first*$second;}
• To call a function we could do:
$p = product1();
$p = product2();

Local Variables

• Variables which are implicitly declared have
global scope.

• One can also explicitly define variables in which
case their score is local to the enclosing block:
my $var; #local to block only --
 # not things called from block
my $count = 0;
my ($num, $sum) = (0,0); #etc

• Perl also supports a different kind of local variable
local $a =5; #local to block and things called from block

More On Functions

• Notice we don’t give a parameter list to a Perl
function.

• It is passed implicitly through the variable @_.
• For example, consider the code snippet:
sub square
{

my ($arg) = @_;
 return $arg*$arg;
}
print square(4);

