
Perl

CS174
Chris Pollett
Oct 23, 2006.

Outline

• Introduction to Perl
• Perl Basics

History of Perl
• Perl was invented in 1987 as a small language to expand

upon the string processing abilities of the Unix commands
awk and sed.

• It has since grown into a quite extensive language with a
large library of useful modules: CPAN.

• Since it is very good for doing string processing, when the
web came along it was ideal for CGI programming.

• Like Java and Pascal and CLR languages, Perl programs
are compiled to a byte-code which is then interpreted
during execution.

• Versions of Perl run on every common platform available
today: Windows, Linux, Mac, Amiga…

Variables, Numeric and String
literals

• Like Javascript, Perl is not strongly typed.
• Perl has three categories of variables: scalars (begin with $), arrays (begin with

@), and hashes (begin with %):
$var, @arr, %hash

• Numbers stored in scalar variables are represented in double-precision floating
point form. Number literals are similar to Javascript:

72, 7.2, .72, 72., 7E2, 7e2, .7e2, 7.2E-2, etc
• Character strings are treated as scalar units in Perl. String literals can be

formed using either ‘ or “; however, they have a slightly different meaning.
Namely, single quotes do not evaluate escape sequences (except \’) or
variables; whereas, double quoted sequence do.

 $a =5;
 echo “I have $a dollars\n”; --> I have 5 dollars (newline)
 echo ‘I have $a dollars’; --> I have $a dollars\n

q$ a single string with a different delimiter$
 qq@ a double quote string with a different delimiter@

‘’ “” -- both are the empty string

Scalar Variables

• As we said before scalar variables are always preceded by a $ sign.
• Variables are case sensitive. So the variables below are different:

$test $Test $teSt$
• Like Javascript variables, Perl variables do not need to be declared

before they are used.
• A scalar variable that has not been assigned a value has value undef.

The numeric value of undef is 0 and its string value is “”.
• In addition to the variables you define, Perl has a large number of

implicit variables which after the $ begin with _, or ^, or \.
• More information about Perl variables can be found through the Perl

documentation software by typing:
perldoc perlvar

Numeric Operators

• Perl has all the familiar numeric operators:
+, -, *, /, ** (exponentiation), %.

• In most circumstances arithmetic is floating
point. So 5/2 will evaluate to 2.5

String Operators

• To concatenate strings in Perl one uses the
period operator:
“hi”.“ there” to get the string “hi there”

• Perl also supports a repetition operator x.
“More ” x 3 gives the string “More More More ”

String Functions
• Perl functions and operators are closely related and can often be used

interchangeably.
• For example, if there were a predefined unary operator blah, then it could be

called using either:
blah x
or
blah(x).

• A function with no parameters can be called with or without empty
parentheses.

• The most commonly used string functions are:
– chomp -- removes terminating newline char’s and returns the number of removed characters
– length -- returns the length of a string
– lc -- converts string to lower case
– uc -- converts string to upper case
– hex -- return the decimal value for a hex string
– join(“c”, @list_of_strings) -- makes a single string with delimiter c

Assignment Statements

• Assignment statement are like in most languages
descended from C:

$a = value;
• We can also use binary and unary assignment

operators:
$a++;
$a += 5;
$str .=“hello”;
• Comments in Perl can be started with a # sign.

The remainder of the line is then a comment.

Keyboard Input
• All input and output in Perl is thought of as file input and

output.
• Files have external names but are referenced in programs

through internal names called filehandles.
• There are three predefined filehandles: STDIN (usually

keyboard), STDOUT (usually screen), STDERR (usually
screen).

• These are the standard input streams, output, and error
streams.

• The line input operator <> acts on input file handles. So
chomp($in_data = <STDIN>);
gets a line from standard in and chops off the newline

characters.

Screen Output

• The commands echo and print can be used to write
to a filehandle.

• If no filehandle is specified then we default to
standard out.
print “Enter a number to square\n”;
$x = <STDIN>;
print “The square of $x is”;
$x *= $x;
print “$x \n”;

Running a Perl Program

• From a command prompt one can run a perl
program with a command like:
perl filename.pl

• To compile to bytecode without interpreting one
can write:
perl -c filename.pl

• To get diagnostic warning statements one can use
the -w flag.
perl -w filename.pl

Control Expressions
• Perl has a two distinct kinds of relational expressions: those for

numeric operands and those for strings.
• The numeric operands will look familiar:
==, !=, <, >, <=, >=, <=> (returns -1, 0, 1 depending on which argument

was bigger).
• The corresponding string literals are:
eq, ne, lt, gt, le, ge, cmp

Roughly, the Fortran name corresponding to the C expression.
• Perl has two sets of operators for AND, OR, NOT: &&, ||, ! as well as

and, or, and not. The former have higher precedence then the
relational expressions; the latter have lower precedence.

Selection Statements

• Perl’s if statement is similar to C’s except that the
“then” clause must have curly braces:

if($a >5) $b++; #is not legal
if($a >5){$b++;} #is legal
• You can also do more complicated constructs:
if($a >1) {print “hi\n”;}
elsif($a <1) {print “bye\n”;} #notice spelling of elsif
else {print “I’m in doubt.\n”;}
• Perl also has a construct for the negation of an if:
unless ($a>1) {print “\$a is too small”;}

