Perl

CS174
Chris Pollett
Oct 23, 2006.

Outline

e Introduction to Perl

e Perl Basics

History of Perl

Perl was invented in 1987 as a small language to expand
upon the string processing abilities of the Unix commands
awk and sed.

It has since grown 1nto a quite extensive language with a
large library of useful modules: CPAN.

Since it 1s very good for doing string processing, when the
web came along 1t was 1deal for CGI programming.

Like Java and Pascal and CLR languages, Perl programs
are compiled to a byte-code which is then interpreted
during execution.

Versions of Perl run on every common platform available
today: Windows, Linux, Mac, Amiga...

Variables, Numeric and String
literals

Like Javascript, Perl is not strongly typed.

Perl has three categories of variables: scalars (begin with §), arrays (begin with
@), and hashes (begin with %):

$var, @arr, %hash
Numbers stored in scalar variables are represented in double-precision floating
point form. Number literals are similar to Javascript:

72,77.2,.72,72.,TE2, 7e2, .7e2, 7.2E-2, etc
Character strings are treated as scalar units in Perl. String literals can be
formed using either ° or ““; however, they have a slightly different meaning.

Namely, single quotes do not evaluate escape sequences (except \’) or
variables; whereas, double quoted sequence do.

$a =5;
echo “I have $a dollars\n”; -->1 have 5 dollars (newline)
echo ‘I have $a dollars’; --> I have $a dollars\n
q$ a single string with a different delimiter$
qq@ a double quote string with a different delimiter@

€Y ¢¢Y

-- both are the empty string

Scalar Variables

As we said before scalar variables are always preceded by a $ sign.
Variables are case sensitive. So the variables below are different:
$test $Test $teSt$

Like Javascript variables, Perl variables do not need to be declared
before they are used.

A scalar variable that has not been assigned a value has value undef.

(1%

The numeric value of undef is 0 and its string value is *“”.

In addition to the variables you define, Perl has a large number of
implicit variables which after the $ begin with _, or A, or \.

More information about Perl variables can be found through the Perl
documentation software by typing:

perldoc perlvar

Numeric Operators

e Perl has all the familiar numeric operators:
+, -, *, /, ** (exponentiation), %.

e In most circumstances arithmetic 1s floating
point. So 5/2 will evaluate to 2.5

String Operators

* To concatenate strings in Perl one uses the
period operator:

“h1”.* there” to get the string *“hi there”
* Perl also supports a repetition operator X.

“More ” x 3 gives the string “More More More ”

String Functions

Perl functions and operators are closely related and can often be used
interchangeably.

For example, if there were a predefined unary operator blah, then it could be
called using either:

blah x

or

blah(x).
A function with no parameters can be called with or without empty
parentheses.

The most commonly used string functions are:

chomp -- removes terminating newline char’s and returns the number of removed characters
length -- returns the length of a string

Ic -- converts string to lower case

uc -- converts string to upper case

hex -- return the decimal value for a hex string

join(“c”, @list_of_strings) -- makes a single string with delimiter ¢

Assignment Statements

e Assignment statement are like in most languages
descended from C:

$a = value;

 We can also use binary and unary assignment
operators:

$a++;
$a +=5;
$str .=“hello”;

 Comments in Perl can be started with a # sign.
The remainder of the line 1s then a comment.

Keyboard Input

All input and output in Perl is thought of as file input and
output.

Files have external names but are referenced in programs
through internal names called filehandles.

There are three predefined filehandles: STDIN (usually
keyboard), STDOUT (usually screen), STDERR (usually
screen).

These are the standard input streams, output, and error
streams.

The line input operator <> acts on input file handles. So
chomp($in_data = <STDIN>);

gets a line from standard in and chops off the newline
characters.

Screen Output

e The commands echo and print can be used to write
to a filehandle.

e If no filehandle is specified then we default to
standard out.

print “Enter a number to square\n”;
$x = <STDIN>;

print “The square of $x is”;

$x *=$x;

print “$x \n”’;

Running a Perl Program

 From a command prompt one can run a perl
program with a command like:

perl filename.pl

 To compile to bytecode without interpreting one
can write:
perl -c filename.pl
 To get diagnostic warning statements one can use
the -w flag.

perl -w filename.pl

Control Expressions

e Perl has a two distinct kinds of relational expressions: those for
numeric operands and those for strings.

e The numeric operands will look familiar:

==, |=, <, >, <=, >=, <=> (returns -1, 0, 1 depending on which argument
was bigger).

e The corresponding string literals are:

eq, ne, It, gt, le, ge, cmp
Roughly, the Fortran name corresponding to the C expression.

e Perl has two sets of operators for AND, OR, NOT: &&, Il, ! as well as
and, or, and not. The former have higher precedence then the
relational expressions; the latter have lower precedence.

Selection Statements

e Perl’s if statement 1s similar to C’s except that the
“then” clause must have curly braces:

if($a >5) $b++; #is not legal

if($a >5){$b++;} #is legal

* You can also do more complicated constructs:

if($a >1) {print “hi\n”;}

elsif($a <1) {print “bye\n”;} #notice spelling of elsif
else {print “I’m in doubt.\n’;}

e Perl also has a construct for the negation of an if:
unless ($a>1) {print “\$a is too small”;}

