
More Javascript

CS174
Chris Pollett
Sep 20, 2006.

Outline

• More Arrays
• Functions
• Constructors/Methods
• Pattern Matching
• Execution Environment
• Document Object Model

More Arrays

• The Array object in Javascript has several useful
methods for manipulating arrays.
– join --- can be used to make a string out of an array.

var names = new Array(“Mary”, “Murray”, “Max”);
var nstring = names.join(“:”);

– concat --- can be used to add elements to an existing
array.

var a = [1, 2, 3];
a.concat(4, 5);

– slice(i,j) --- return a sublist from the i to the j element.
– push, pop, shift, unshift --- stack-like operations

Functions
• A Javascript function definition consists of two parts:

– a function header consisting of
• the keyword function
• an identifier
• a parenthesized list of parameters

– a compound statement
For example,
function swap(i, j, a)
{

var tmp=a[i]; /* explicitly defined variables have scope within the function
 if I had declared the variable implicitly it would have global scope */

a[i] = a[j]; a[j] = tmp;
}
This function could be called with a syntax like:
swap(10, 5, b);

• A return statement can be used to return a value from a function.
• Functions are objects so can be assigned to variables.

var b = swap;
• The definition of a function does not need to list its arguments. One can obtain a list of

arguments using the argument subobject of a Function.
function swap()
{ var i = this.arguments[0], j=this.arguments[1], a=this.arguments[2];
 //same code as before
}

Constructors
• Javascript constructors are special methods that create and initialize

the properties for newly created objects. For example,
function car(new_make, new_model, new_year)
{

this.make = new_make;
this.model = new_model;
this.year = new_year;

}
I could then create an object with
my_car = new car(“Ford”, “Contour SVT”, “2000”);

Methods

• To create methods, I can do things like the following way to create a display
method to pretty print cars:
function display_car()
{

document.write(“Make:”, this.make, “
”);
document.write(“Model:”, this.model, “
”);
document.write(“Year:”, this.year, “
”);

}
function car(/*same as before*/)
{ //same as before
this.display = display_car;}

Pattern Matching
• Frequently in Javascript we will be manipulating strings

using pattern matching, so it is useful to know what
facilities are available for this.

• Javascript pattern matching is modeled on Perl’s regular
expressions.

• A pattern is an expression between / /.
• In such a pattern normal characters match themselves.
• In addition to normal characters there are special

characters: \ | () [] {} ^ $ * + ? .
• As an example:

var str = “Rabbits are furry”;
var position = str.search(/bits/); /* return position first

occurrence */

Pattern Special Characters
• . -- matches any single character. So /snow./ would match snows and snowy
• () -- used to control order of matching /(ab)*/ matches ab, abab, but not aab
• [] -- logical or of a group of patterns

– [azf] matches an “a”, a “z”, or an “f”.
– [a-d] - matches the range a,b,c,d

• ^ -- acts as negation or as a start of string anchor. So [^abc] is any character
other than a, b, c; /^abc/ matches abc at the start of a string.

• $ -- acts acts an anchor to end of a string. /abc$/ matches abc at the end of a
string.

• \ -- either can be used to escape characters (so \. would match a period), or for
one of a list of special escape patterns such as \r \t, \n, \f or

– \d -- match a digit,
– \D -- match anything other than a digit
– \w match a word character (alphanumeric)
– \W match a not a word character.
– \s match a single whitespace character
– \S match a single nonwhitespace character

Yet more special characters

• * -- matches 0 or more occurrences of the pattern.
For example /x*/ would match x, xx, xxx …

• + -- matches 1 or more occurrences of the pattern
• ? -- matches 0 or 1 occurrences of the pattern
• {} -- can be used to match exactly k occurrences:

/yx{5}z/ matches yxxxxxz

Pattern Modifiers

• i -- makes the pattern case insensitive. For
example,
/Apple/i would match APPLE, aPple and apple.

• x -- allows whitespace to occur in the pattern

• g-- means do globally - we’ll see this more on the
next slide

More Pattern Methods

• replace -- replace the matched pattern with the given
replacement string.
var str=“Fred, Freddie, Frederica”;
str.replace(/Fre/g, “Boyd”);
//notice use g to replace all occurences. The variable $1 is assigned by

the match to the first matched substring, $2 to the second, etc.
• match -- returns an array of the pattern matched results

var str= “3 and 4”;
var matches = str.match(/\d/g); //returns [3, 4]

• split -- splits a string into an array of substrings according
to the pattern delimiter
var str=“grapes:apples:oranges”
var fruit = str.split(“:”); // [grapes, apples,oranges]

Execution Environment
• When a browser displays an XHTML document in a window, it will

set up a Javascript Window object to represent information about the
window.

• All Javascript variables are properties of some object. So implicitly
defined globals on a page can be viewed as properties of the Window
object.

• You can have more than one Window object if the browser opens
more than one window.

• Every Window object has a property document which is the
Document object representing the XHTML document it displays.

• Every document objects has a forms array each element of which
represents a form (Form object) on the document.

• Each Form object has an elements array as a property which contains
an array of form elements for the buttons , menus, etc on it.

• Document objects also have property arrays for anchors, links,
images, and applets.

Document Object Model

• The Document Object Model is a model
developed in the 90s for how the contents of an
XHTML or XML document should be modelled
by Javascript or other language’s objects.

• Typically a document is modeled as a tree with
roughly one node for each element type.

• DOM also described methods for getting,
updating, and modifying elements.

• DOM Level 2 is the currently adopted standard,
although there has been been development of
DOM level 3.

