
Cascading Style Sheets

CS174
Chris Pollett
Sep 11, 2006.

Outline

• Server Side Includes
• Cascading Style Sheets

Server Side Includes (SSI)

• So far in this class, we’ve learned a little about
how the web server works and XHTML.

• We’ll talk a little more about XHTML in a
moment…

• But first, let’s consider a minimal way to make
web-pages more dynamic.

• Server Side Includes are a minimal programming
language (not Turing complete) that is supported
by both Apache and IIS.

• They illustrate several of the concepts we’ll see
later for more supped up server side languages.

Getting (SSI) running
• To get Apache to use its processor for SSI directives one needs the lines

AddType text/html .shtml
AddHandler server-parsed .shtml

 in the httpd.conf file
• At the directory level to say SSI is allowed, you, within <directory> tags you

add the line:
Options +Includes

• This line can also be added within .htaccess files
• The default extension for files containing SSI directives is .shtml . If you’d

like to use .html instead, then in your httpd.conf file you need the line:
XBitHack on

• The file that contains the SSI directives need also to have execute privileges
set for the WebServer user.

The SSI Commands
• A basic SSI directive has the syntax:
<!--#element attribute=value attribute=value ... -->
• element can be one of config, cmd, echo, elsif, else, endif,

exec, if, flastmod, include, set
• cmd and exec are for executing shell command or scripts

and are typically disabled.
• echo and set are used for printing and setting a variable
<!--#set var=‘bob’ value=‘hello’ -->
<!--#echo var=‘bob’ -->
• The server also automatically sets some variables

according to the Common Gateway Interface (CGI):
<!--#echo var=‘QUERY_STRING’ -->
<!--#set var=‘bob’ value=‘hello${DATE_LOCAL}’ -->

More on SSI command
• The command config can be used to format dates as well as error messages:
<!--#config errmsg="[This is what the SSI error message will look like]" -->
<!--#config timefmt="%d, %Y" -->
 This file was last modified <!--#flastmod file="ssi.shtml" -->.
• By the way this also show what flastmod is for.
• include can be used to include one file within another and can allow for simple

templating:
<!--#include virtual="footer.html" -->
• if, elsif, else operate like in similar to in Java but can’t nest:
<!--#if expr="\"${QUERY_STRING}\" = \"\" ||
 \"${QUERY_STRING}\" = \"print\" " -->
<!--#include virtual="classpage.html" -->
<!--#else -->
<!--#include virtual="${QUERY_STRING}" -->
<!--#endif -->

Stylesheets
• We now return to talking about XHTML, in particular, how to control the

presentation of XHTML documents with stylesheets.
• Stylesheets are used to specify the look of the page and its elements.
• For instance, one can globally control things like margins, indentation, etc.
• They can be used to support the idea of separating structure of content from

how it is presented.
• Cascading Style Sheets (CSS) are the standard way to do this for XHTML

documents.
• CSS comes in three specs: CSS1, CSS2, CSS3, each adding more features to

the last.
• Most modern browsers support CSS1 and parts of CSS2.
• The basic concept in a stylesheet is that of the value of a property that a tag

has.
• Cascading refers to how settings of this value in high level stylesheets can be

overrriden in lower level style sheets.

Levels of Style Sheets
• So what are the levels of stylesheets?

– inline, document, external.
• inline --sets property value ofr single tag. (deprecated XHTML1.1) For

example,
<p style=“color: red”>red paragraph</p>

• document -- sets property value for the whole document
• external -- sets property value for several documents till value is

changed.
• If no style information is available for a given property the browser

will use a default value.
• It is often useful to use the same stylesheet for several documents. The

MIME type for stylesheets is text/css. You can link a stylesheet file
into an xhtml file with a line like:

< link rel=“stylesheet” type=“text/css” href=“mystyles.css” />
• Styles can be validatds at the W3C site.

Basics of Styles
• The basic inline style command looks like:

<tag style=“property_1: value1 ; property2: value2; …” >
• The basic document level style in the head of the document

looks like
<style type=“text/css” >
 /* here is a comment */

rule_list
</style>
• Each rule has the format

selector {property_1: value1 ; property2: value2; …}
• External style sheets are similar to document level styles

except you don’t need the style tags.

Examples of Simple Selectors

h1 {font-size: 24pt} /* would apply to all h1 tags in
the document */

h2, h3 {font-size: 14pt} /* notice applies to both h2
and h3 tags */

You can also specify that styles should only apply to
elements in certain positions within the file:

body b i {font-size: 30pt;} /* only for bolded italic’d
text within file, doesn’t work NS7*/

Class selectors

A class is defined in a style element by putting a period with a
name after it:

p.normal {prop_list1}
p.narrow {prop_list2}

To use we do:
<p class=“normal”>normal look text</p>

One can also have generic selectors:
.red {color:red}
These can be used with multiple tags
<h3 class=“red”></h3> <p class=“red”></p>

ID Selectors

• In a similar way to class selectors, one can use a
“#” to specify an id selector

p#sec1 {prop_list2}

To use we do:
<p id=“sec1”>section1 text</p>

