More Server-Side Perl

CS174
Chris Pollett
Nov 1, 2006.

Outline

CGI.pm shortcuts
Headers and Footers
Handling Form data

flock
Handling Cookies

CGIL.pm

 CGI.pm 1s a Perl module with a bunch of
functions and classes defined 1n 1t to make server
side programming easy.

e To use CGIL.pm, you add the following line at the
start of your Perl program:

use CGI “:standard’;
e The string “:standard” says that we don’t want to

load the whole module and that we don’t want to
mess with the OO way to interact with CGIL.pm.

Common CGIL.pm functions

 CGI.pm adds several functions which correspond
to HI'ML tags.

e For instance the function br corresponds to the
break tag. The line:
print br;
outputs

e This kind of shortcut command may take

parameters. So:
print h1(*“This 1s the real stuff™);

outputs
<h1>This is the real stutff</h1>

More CGI.pm functions

» HTML tags usually have both contents and attributes.
Attributes can be provided to CGIL.pm shortcuts as name
value pairs using following kind of syntax:

print textarea(-name => “Description”,
-rows => 27,
-cols => “37);
This outputs:
<textarea name="Description” rows="“2" cols="“3"></textarea>
* You can also have functions which take attributes and
contents:
print a({-href => “fruit.html”}, “Press here for fruit descriptions”);

Even More CGI.pm functions

e In general, shortcut functions can save considerably on outputting
pages and forms.
e For instance, to output lists one can use the following syntax:
print ol(li({-type =>"square”}, [“milk”,”’bread”, “cheese”]));
To get:

<li type="‘square”>milk
<li type="“square”>bread
<li type="“square”’>cheese

e A similar strategy works unordered lists. There are also command like
this for tables (see book).

Radio Groups

e To output radio groups one can do:
print radio_group(-name=> ‘colors’,
-values => [‘blue’, ‘green’, ‘yellow’, ‘red’],
-default => ‘blue’
);
e This outputs:

<input type="“radio” name="“colors” values="blue”
checked="“checked” /> blue

<input type="“radio” name="colors” values="“green” /> green
<input type="“radio” name="“colors” values="yellow” /> yellow

<input type="“radio” name="colors” values="red” /> red

Headers and Footers

Recall if we were not using CGIL.pm we had to manually print out the
Content-type header to get anything to appear over at the client.

This can be easily accomplished using the single line:
print header;
This outputs

Content-Type: text/html; charset=ISO-8859-1
---blank line ---

It 1s also easy to output the head of an HTML document with:
print start_html(““Title of doc”);

This outputs

<?xml version="1.0" encoding="is0-8859-1"7>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en-US" xml:lang="en-
US"><head><title>title</title>

</head><body>

To close the document we could use end_html to output
</body></html>

More Complicated Headers

e The header function can take parameters which

can output more complicated headers:

print header(-type=>'image/gif',
-status=>'402 Payment Required’,
-expires=>"'+3d',#how long browser should #cache

this cgi response
-cookie=>$my cookie, #what cookie to set
-charset=>"'UTF-7",
-attachment=>"foo.gif',
—-Cost=>"'$0.02' #random other header
) 7
» Similarly, we can add parameters to start html: -

title, -author, -style, -dtd

Handling Form Data

* Form data sent to your script is easily
available using the param function.

* For instance,
my $name = param(‘“‘formvar”);

Stores the value sent by the form for the
variable formvar into the $name perl
variable.

Flock

* Consider the following scenario which might
happen if we were trying to maintain a counter:

#Have a file with a count currently at 27

1. CGII started by Clientl reads the file containing the
count into its variable $counter (gets 27)

2. CQGI2 started by Client2 reads the file containing the
count into its variable $counter (gets 27)

3. CGII does $counter++ (so 28) writes file back out
4. CGI2 does $counter++ (so 28) writes file back out.

* So we had two hits but it was only counted as
ong¢ hit.

 To prevent this we want to use locking.
* This can be done using the Perl flock function.

Flock Example

use Fentl qgw(:DEFAULT :flock);

open(TAX DATA, “+<taxdata™) or

die “TAX DATA could not be opened”;
flock(TAX DATA, LOCK EX) or

die “TAX DATA could not be locked™;

chomp($tax = <TAX DATA>); #now update $tax
seek(TAX DATA, 0, 0) or

die “TAX DATA could not be rewound”;
print TAX DATA $tax or

die “TAX DATA could not be rewritten”;
close TAX DATA;

CGIL.pm and Cookies

 We saw how we could set a cookie using the header
command.

 We can create a cookie using:
$mycookie = cookie (
-name => a_name,
-value => a value,
-expires => a_time
);

* We can also use cookie to get the value returned froma
client for a cookie:

$age = cookie(“age”);

