
More Server-Side Perl

CS174
Chris Pollett
Nov 1, 2006.

Outline

• CGI.pm shortcuts
• Headers and Footers
• Handling Form data
• flock
• Handling Cookies

CGI.pm

• CGI.pm is a Perl module with a bunch of
functions and classes defined in it to make server
side programming easy.

• To use CGI.pm, you add the following line at the
start of your Perl program:
use CGI “:standard”;

• The string “:standard” says that we don’t want to
load the whole module and that we don’t want to
mess with the OO way to interact with CGI.pm.

Common CGI.pm functions

• CGI.pm adds several functions which correspond
to HTML tags.

• For instance the function br corresponds to the
break tag. The line:
print br;
outputs

• This kind of shortcut command may take
parameters. So:
print h1(“This is the real stuff”);
outputs
<h1>This is the real stuff</h1>

More CGI.pm functions
• HTML tags usually have both contents and attributes.

Attributes can be provided to CGI.pm shortcuts as name
value pairs using following kind of syntax:
print textarea(-name => “Description”,
 -rows => “2”,
 -cols => “3”);
This outputs:
<textarea name=“Description” rows=“2” cols=“3”></textarea>

• You can also have functions which take attributes and
contents:
print a({-href => “fruit.html”}, “Press here for fruit descriptions”);

Even More CGI.pm functions

• In general, shortcut functions can save considerably on outputting
pages and forms.

• For instance, to output lists one can use the following syntax:
print ol(li({-type =>”square”}, [“milk”,”bread”, “cheese”]));
To get:

 <li type=“square”>milk
<li type=“square”>bread
<li type=“square”>cheese

• A similar strategy works unordered lists. There are also command like
this for tables (see book).

Radio Groups

• To output radio groups one can do:
print radio_group(-name=> ‘colors’,

-values => [‘blue’, ‘green’, ‘yellow’, ‘red’],
 -default => ‘blue’
);

• This outputs:
<input type=“radio” name=“colors” values=“blue”

checked=“checked” /> blue
<input type=“radio” name=“colors” values=“green” /> green
<input type=“radio” name=“colors” values=“yellow” /> yellow
<input type=“radio” name=“colors” values=“red” /> red

Headers and Footers
• Recall if we were not using CGI.pm we had to manually print out the

Content-type header to get anything to appear over at the client.
• This can be easily accomplished using the single line:

print header;
This outputs

 Content-Type: text/html; charset=ISO-8859-1

 ---blank line ---

• It is also easy to output the head of an HTML document with:
print start_html(“Title of doc”);
This outputs
 <?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-

US"><head><title>title</title>
</head><body>

• To close the document we could use end_html to output
</body></html>

More Complicated Headers

• The header function can take parameters which
can output more complicated headers:
print header(-type=>'image/gif',

-status=>'402 Payment Required',
-expires=>'+3d',#how long browser should #cache
this cgi response

 -cookie=>$my_cookie, #what cookie to set
 -charset=>'UTF-7',
 -attachment=>'foo.gif',
 -Cost=>'$0.02’ #random other header
);

• Similarly, we can add parameters to start_html: -
title, -author, -style, -dtd

Handling Form Data

• Form data sent to your script is easily
available using the param function.

• For instance,

my $name = param(“formvar”);

 Stores the value sent by the form for the
variable formvar into the $name perl
variable.

Flock
• Consider the following scenario which might

happen if we were trying to maintain a counter:
#Have a file with a count currently at 27

1. CGI1 started by Client1 reads the file containing the
count into its variable $counter (gets 27)

2. CGI2 started by Client2 reads the file containing the
count into its variable $counter (gets 27)

3. CGI1 does $counter++ (so 28) writes file back out
4. CGI2 does $counter++ (so 28) writes file back out.

• So we had two hits but it was only counted as
one hit.

• To prevent this we want to use locking.
• This can be done using the Perl flock function.

Flock Example

 use Fcntl qw(:DEFAULT :flock);

 open(TAX_DATA, “+<taxdata”) or
 die “TAX_DATA could not be opened”;
 flock(TAX_DATA, LOCK_EX) or
 die “TAX_DATA could not be locked”;
chomp($tax = <TAX_DATA>); #now update $tax
seek(TAX_DATA, 0, 0) or
 die “TAX_DATA could not be rewound”;
print TAX_DATA $tax or
 die “TAX_DATA could not be rewritten”;
close TAX_DATA;

CGI.pm and Cookies

• We saw how we could set a cookie using the header
command.

• We can create a cookie using:
$mycookie = cookie (

-name => a_name,
 -value => a_value,
 -expires => a_time
);
• We can also use cookie to get the value returned froma

client for a cookie:
$age = cookie(“age”);

