
Yet More Javascript

CS174
Chris Pollett
Sep 26, 2007.

Outline

• Element Access in Javascript
• Events and Event Handling
• Validating Forms
• DOM 2
• Element Positioning
• Moving Elements
• Element Visibility

Element Access in Javascript
• The DOM 0 way of associating Javascript objects with form elements was to

use the forms array of the Document Object, as well as its sub elements array.
• For example, if there was only one form on a page with the following button

on it:
<input type=“button” name=“turnItOn” />
then it could be accessed with document.forms[0].elements[0].

• This is awkward if we start to add elements as this address could change.
Instead, we could do document.forms[0].turniton

• Still, having forms[0] is awkward. Another approach is to given this button an
id:

<input type=“button” id=“turnItOn” name=“turnItOn”/>
We could then look up the button using:
button = document.getElementById(“turnItOn”);

• We need the attribute name still for the button above because that is what gets
sent to the server as the name/value pair when the form is submitted.

More on Element Access

• Checkboxes in a group of checkboxes often share the same name.
• Radio buttons in a group of radio buttons always share the same name.
• In the DOM, these object get reflected as an array rather than an

element of that name.
• For example suppose we had a radio button group with name vehicles.

on a form with id bob. We could access this by doing
myForm = document.getElementById(“bob”);
numButtons = myForm.vehicles.length;
// if we want to we could cycle over this array for values.
for(i =0 ; i < numButtons; i++)
{

 oneVehicle = myForm.vehicles[i].
 // do something
}

Events and Event Handling
• In XHTML, there are a collection of attributes beginning

with “on” that can be used to give a handler for different
kinds of events:
– onblur -- can be used in <a>, <button>, <input>, <textarea>,

<select>
– onchange -- can be used in <input>, <textarea>, <select>
– onclick -- can be used in <a>, <input>
– onfocus -- can be used in <a>, <input>, <textarea>, <select>
– onload/ onunload -- can be used in <body>
– onmousedown, onmousemove, onmouseout, onmouseover,

onmouseup -- can be used in most elements.
– onselect -- can be used in <input>, <textarea>

• An example, of using one of these is:
<input type = “button” id=“b” name=“b” onclick=“alert(‘b tapped’);” />

More on Event Handling

• Besides the method of the last slide to register a
handler for an event, you can also set the handler
from Javascript:
document.getElementByID(“b”).onclick =

myNewHandler;
• We can set the values of other form elements

within Javascript and we can also generate events
within Javascript.

<input type=“text” id=“cost”
onfocus=“this.value=10; this.blur();” />

Validating Forms
• As we said before it useful to check that the data entered into a form is

valid before sending it to the server.
• We saw last class we can associate a handler with a form using a

syntax-like:
<form … onsubmit=“return checkSubmit()” >
• If this function returns true; the form is submitted; otherwise it is not.
• Typically, if the form is not correct you want to display some message.

– You could either use an alert
– Or you could set the style of some element from display: none to display: inline or

display:block. This would allow you to put stars by missing data:
phoneStar = document.getElementById(“phoneStar”);
phoneStar.style=“display:inline”;

– One can also dynamically insert content such as an error message into div tags by
setting its innerHTML attribute.

– Finally, if only one element is missing in the form it doesn’t to generate focus() and
select() events on it.

DOM 2
• The DOM 2 Event model is supported by Firefox and other recent

browsers but is not supported by IE6.
• In this model events are split into HTMLEvents like blur and

MouseEvents like click and all events beginning with mouse.
• Event registration is done using addEventListener:

document.myelement.addEventListener(“change”, myhandler, false).
• You can add multiple handlers to the same node.
• There is also a removeEventListener method.
• Events are targeted on some node in the doc tree. In the event

capturing phase, one starts at the root node and goes down the tree
toward the target calling all events whose onCapture flag is true. When
the target node is reached a DOM 0 like event handling is done for
handlers that are specifically attached ot this target. Then a bubbling
phase back up the tree happens and all listeners whose onCapture flag
is false are called.

Whether
called
incapture or
bubbling
phase

The Navigator Object

• The navigator object can be used to
determine browser type.

• It has two useful properties, appName and
appVersion

Element Positioning
• Positioning of elements can be done using styles.
• It come in two types absolute and relative:

<p style=“position: absolute; left:100px; top: 200px”>some text
</p>
<p style=“position: relative; left:10px; top: -20px; width: 50”>some

other text
</p>

• Both positionings can be used to set text on top of other
text.

• Since you can change the style property of an element in
Javascript, you can use positioning to move objects around
on the screen dynamically.

Moving Elements
• Consider the following Javascript function:

function moveIt(id, newTop, newLeft)
{

myStyle = document.getElementById(id).style;
myStyle.top = newTop + “px”; /* notice how CSS properties are

properties of the style object*/
myStyle.left = newLeft + “px”;

}
• This could be used to move an element to a specific

location on the screen.

Element Visibility, Colors and
Fonts

• You can control the visibility of an XHTML element using the CSS
property.
<div id=“test” style=“visibility: hidden”>hi there</div>
<input type=“button” onclick=‘show(“test”)’ />
<script type=“text/javascript”>

function show(id)
 {

myStyle = document.getElementById(id).style;
 myStyle.visibility = “visible”;
 }
</script>

• In a similar fashion one can change other CSS properties in response
to events. For instance, if you like you could change the color or font
type or size.

