
PHP: Functions, Patterns, Forms,
Files

CS174
Chris Pollett
Oct 22, 2007.

Outline

• More on PHP Arrays
• Functions
• Variable Scope
• Pattern Matching
• Form Handling
• File Handling

More on PHP Arrays
• Last Wednesday, we saw the basics of creating/accessing an array in PHP:

$arr=array(1,2,3); echo $arr[2]; /*would print 3 */
• Recall also $carr = array(); //create an empty array
• Arrays in PHP are similar to Perl hashes.
• The above way to create $arr can also be written in PHP as:

$arr = array(0=> 1, 1=>2, 2=>3);
• Like hashes we can do things like $arr = array(“joe”=> 5, “mary” =>6);
• To get the keys and values we can use the functions: $keys = array_keys($arr)

and $values = array_values($arr);
• Arrays can also be created by an assignment: $barr[1] = 5; // creates array

$barr if doesn’t exist
• If did the assignment $barr[] = 6; Then since the argument to [] wasn’t

specified PHP will assign $barr[2] = 6;

Yet More on PHP Arrays
• You can call the unset function on the element in an array: $list=

array(2,4,6,8); unset($list[2]);
• Some useful array functions: count -- returns the number of elements

in an array, is_array, in_array, implode, explode, sort.
• To see how implode/explode work consider:

$str=“this is a string”;
$words = explode(“ ”, $str); /*acts like split except here the first argument is

a string rather than a regular expression. So words is an array(“this”, “is”,
“a”, “string”). PHP has a split function but not as fast, since arg might be a
regular expression. */

$str2 = implode(“ ”, $words); //undoes the explode.

Iterating Through Arrays
• The function current can be used to return a pointer to the current element in

an array. The next function can be used to advance this pointer and get its
value:

$cities = array(“San Jose”, “San Diego”);
echo current($cities); // prints San Jose
$another = next($cities); // $another is now San Diego;

• There are also the functions each, prev, end, and reset to facilitate moving
through array.

• The function each is similar to next except after advancing the current pointer,
it returns the old pointer as a two element array consisting of a key/value pair.

• We saw last day that one can iterate through arrays using foreach($arr as
$val){…}

• PHP also supports code like
$lows = array(“Mon” => 23, “Tue” => 18);
foreach($lows as $day =>$temp)
{echo “$day lows were $temp”;}

Functions
• The general format of a PHP functions is:

function name([parameter]){…}
For example,
function inc($i){return ++$i;}

• A return value can be sent back using a return call as in many programming
languages.

• You can modularize your code by putting several function definitions into a
file and then use the include function to include them into any document that
needs those functions.

• Parameters are passed by value. So the function call:
$b = inc($a); // leaves the value of $a unchanged
• You can call by reference by using an ampersand:
$b =inc(&$a); //here the value of $a is changed (one is added to it).
• You can also create functions with pass by reference parameters: function

inc(&$i){…}

Variable Scope
• The default scope of a variable in PHP is only within the function that it is used. That is local scope:

$bob = 5;
function test()
{ $bob=6; echo $bob; //echo’s 6}
test();
echo $bob; //echo’s 5

• In order to access global variables within a local function one would need to use the global
declaration:
 $bob =5;

 function test()

 {
 global $bob; # if did not do bob would be NULL
 echo $bob;
 }
 test();
• PHP also supports static local variables. These preserve states between function calls: function

addone () {static $count =0; echo $count++;}

Pattern Matching

• PHP supports Perl style regular expression
and POSIX regular expressions.

• For example,
$fruits = preg_split(“/:/”, “apples:oranges”);
//would act like Perl’s split
• preg_match acts like acts like Javascript

match.

Types of web forms
• Recall a basic web form looks like:

<form method=“get” action=“script.php”>
 <input type=“text” name=“my_textfield”
 size=“10” />
 <input type=“hidden” name=“secret_data”
 value=“do not peak” />
 <input type=“submit” name=“sendform”
 value=“Send this Form” />
</form>

• The method can be get or post.
• The get method sends the fields as urlencoded name=value pairs appended to the URL:

script.php?my_textfield=hello&secret_data=do%20not%20peak&sendform=Send%20this%20Form
• Post variables are sent as part of the content of an HTTP POST command (you won’t see

this in URL bar)
• File upload forms must use post and in addition must set and encoding type: <form

method=“post” action=“script.php” enctype=“multipart/form-data”><input type=“file”
name=“my_file” />…</form>

Built-in Globals
• PHP makes available several important global variables which are useful for

server side scripts.
• The phpinfo() function can be used to find out all of these globals.
• Here are some of the main ones:

$_SERVER -- an array of information about the server like
$_SERVER[“SERVER_NAME”], $_SERVER [“DOCUMENT_ROOT”],
$_SERVER [“QUERY_STRING”], etc

$_ENV -- an array of info about the runtime environment: $_ENV[“PATH”],
$_ENV[“PWD”], etc.

$_REQUEST -- an array of the variables that have been get’d or post’s from forms. So
if $_SERVER[“QUERY_STRING”] was hi=there&hi2=there2 would have
$_REQUEST[“hi”] == “there” and $_REQUEST[“hi2”]=“there2”;

$_GET -- like $_REQUEST but only for get’d variables
$_POST -- like $_REQUEST but for post’d variables

• PHP can be configured with register_globals = On, in which case the variable
$hi would be a global with value “there”. This is a bit risky security-wise.

File Reading
• Since PHP is a server side technology it is allowed to create, read, and

write file on the server’s filesystem.
• To open a file for reading one can do:
 $fileHandle = fopen(“my.dat”, “r”);
 $file_string = fread($fileHandle, filesize(“my.dat”));
 fclose($fileHandle);
• Here fread reads in its second parameter many bytes.
• To read in a single line from a file one can use:

$line = fgets($fileHandle, $max_num_bytes_line);
• Alternatively, one can read the whole file in as a string using a single

command like:
$string = file_gets_content(“my.dat”);

• Similarly, sometimes it is useful to read in the whole file as an array of
lines:
$lines = file(“my.dat”);

File Writing

• File writing can be done in a similar fashion to file
reading in PHP.

 $fileHandle = fopen(“my.dat”, “w”); // use “a”
for append

 fwrite($fileHandle, $out_data);
 fclose($fileHandle);
• One can also write out a whole file based on a

string using:
file_put_contents(“out.dat”, $str);

