
Even More Javascript & XML

CS174
Chris Pollett
Oct 1, 2007.

Outline

• Moving Elements
• Visibility
• Dynamic Content
• Timers
• Introduction to XML

Moving Elements
• We have previously talked about absolute and relative

positioning.
• Today we’ll consider this in the context of moving

elements around the screen.
• Consider the following Javascript function:

function moveIt(id, newTop, newLeft)
{

myStyle = document.getElementById(id).style;
myStyle.top = newTop + “px”; /* notice how CSS properties are

properties of the style object*/
myStyle.left = newLeft + “px”;

}
• This could be used to move an element to a specific

location on the screen.

Element Visibility, Colors and
Fonts

• You can control the visibility of an XHTML element using
the CSS property.
<div id=“test” style=“visibility: hidden”>hi there</div>
<input type=“button” onclick=‘show(“test”)’ />
<script type=“text/javascript”>

function show(id)
 {

myStyle = document.getElementById(id).style;
 myStyle.visibility = “visible”;
 }
</script>

• In a similar fashion one can change other CSS properties in
response to events. For instance, if you like you could
change the color or font type or size.

Dynamic Content
• It is sometimes useful to be able to give help information when a person

hovers over a form element. This can be achieved as follows:
<script type=“text/javascript” >

 msgs = [“<p>mesg0</p>”, “<p>mesg1</p>”]
function showMessage(evt, num)

 {
 box = document.getElementById(“adviceBox”);

 box.innerHTML = msgs[num];
 myStyle =box.style;
 myStyle.position = “absolute”;
 myStyle.top = evt.clientY +10 +”px”;
 myStyle.left = evt.clientX +10 +”px”;
 myStyle.visibility = “visible”;
 }
 function hideMessage()
 {

 myStyle = document.getElementById(“adviceBox”).style;
 myStyle.visibility = “hidden”;

 }
</script>
<div id=“adviceBox” style=“visibility:hidden” />
<input type=“text” onmouseover=“showMessage(event, 1)” onmouseout=“hideMessage()” />

Timers

• It is sometimes useful to update the contents of a
page every so many milliseconds.

• Javascript support this by using either the
functions setInterval or setTimeout.

• For example,
setTimeout(myCallback, repeatTimeInMilliSec);
// myCallback is the Javascript function you would like

called
• To stop the timer you can use

clearTimeout/clearInterval.

Introduction to XML

• Recall that HTML was originally specified as an SGML
(Standard Generalized Markup Language) doctype.

• HTML only provides limited semantic information about a
document. You can tell if something is in <h1> tags that is
probably important, but not much else.

• Starting in 1998 a stripped down version of SGML called
XML (extensible markup language) was developed to
make it easier to create new tag-based mark-up languages
where the tags can be used to carry whatever semantic
information is desired.

The Syntax of XML
• A new XML language can be specified in one of two ways:

– Give a DTD (Document Type Definition) -- this is closer to the
SGML way of specifying languages

– Give an XML schema -- unlike DTDs such schemas are also XML
documents so can easily be parse with XMLParsers. Further
schemas can be more detailed.

• In both a DTD and a schema, one specifies:
– What tag elements exist in the language
– What subelements or data a given element is allowed to contain
– What attributes an element has and what their values can be.

• Tags are case-sensitive in XML, and every tag must have a
close tag, although the abbreviation <element /> works as
an implicit close tag.

XML Document Structure and
Entities

• Let’s look at XML document:
<patient type=“out of state”>
 <![CDATA[This is data that will not be parsed by the XML parser even if it have

tags in it like this: <tag>]]>
<name><first>John</first><last>Smith</last></name>
<insurerID>&kaiser;</insurerID>

</patient>
• Two files are usually associated with such a document:

– one specifies what tags will be used with this document
– another specifies how those tags should be styled.

• One can abbreviate parts of a document using entities. For example, &kaiser;
above might abbreviate some string of numbers.

• Associated with any XML document is a document entity. This can be thought
of as the root of the tree associated with the tags of the document. This entity
thus can represent the whole document or the parts of it which do not change.

• Entities can also be used to reference binary data such as images.

Document Type Definitions
• A DTD is used to specify:

1. what tags will be used in a document
2. what kind of data or subtags these tags can hold
3. what attributes the tags can have and what values for these attributes are legal
4. what entities can occur in the document

• DTDs can be internal (occur in the XML document itself) or external (occur
in some separate file).

• A DTD consists of a sequence of declarations enclosed in the block of a
DOCTYPE markup declaration.

• Items 1-4 above correspond to the declaration of type <!ELEMENT …> (1
and 2), <!ATTLIST …>, and <!ENTITY …>

• There is also a tag called <!NOTATION …>which is sometimes
used.

<!ELEMENT ..>
• Basic syntax of the tag is:

<!ELEMENT element_name (list of names of child elements) SYSTEM
Location NDATA NotationName >

• Some examples:
<!ELEMENT memo (from, to, date) > <![CDATA[SYSTEM and NDATA
don’t have to used]>

 <!ELEMENT dept_script SYSTEM “dept.php” NDATA “php” >
 <!NOTATION php SYSTEM “/usr/bin/php” >

<!ELEMENT person(parent+, age, spouse?, sibling*) > <![CDATA[+ is one
than one, ? is optional, and * is 0 or more]>

 <!ELEMENT element_name (#PCDATA) > ![CDATA[pcdata = parsable
character data can also use EMPTY for no sub-tags or character data or ANY
if you want to allow everything]>

<!ATTLIST ..>
• The general way to specify a list of attributes is:
<!ATTLIST element_name
 attribute_name_1 attribute_type [default_value] … attribute_name_n

attribute_type [default_value] >
• For example,
<!ATTLIST airplane places CDATA “4”>
<!ATTLIST airplane engine_type CDATA #REQUIRED><![CDATA[must

have the field]>
<!ATTLIST airplane price CDATA #IMPLIED><![CDATA[no default value

is given]>
<!ATTLIST airplane manufacturer CDATA #FIXED “cessna”><![CDATA[

all instances must have the same value]>

<!ENTITY ..>
• Entities come in two flavors:

– General entities that can be referenced anywhere in an XML
document

– Parameter entities which can be referenced only in markup
declarations

• The general form of an entity declaration is:
<!ENTITY [%] entity_name “entity value” >
<![CDATA[% is used when it is a parameter entity]>

• For example,
<!ENTITY cp “Chris Pollett” >
<!ENTITY cool_pic SYSTEM “/usr/local/cool_pic.jpg”>

Example DTD
<?xml version = “1.0” encoding =“utf-8” ?>
<!-- plane.dtd fragment -->
<!ELEMENT planes_for_sale (ad+)>
<!ELEMENT ad (year, make, model, color, price?, seller) >
…
<!ELEMENT seller (#PCDATA)>

<!ATTLIST seller phone CDATA #REQUIRED>

<!ENTITY c “cessna” >

