
PHP: Databases and Classes.

CS174.

Chris Pollett.

Sep 29, 2008.

Outline.

• Databases.
• Classes.

Connecting to MySQL from PHP.

•	 To start a connect to a MySQL database one can issue the command:

$db = mysql_connect();
•	 This function actually takes three parameters: the host, the username,

and the password.
•	 These default to localhost, the process name PHP runs under, and

blank.

$db = mysql_connect(host, uname,pword);

•	 Depending on how mysql is configured, the first example above might
work and saves some typing.

•	 This function returns false if a connection is not made.
•	 To close a database, one can call mysql_close();

Selecting a Database and queries.

•	 To select a database one calls:

mysql_select_db(“cars”);
•	 One can then do a query with a command like:

$query =“SELECT * FROM Corvettes”;
$result = mysql_query($query);
$num_rows = mysql_num_rows($result);
$num_fields = mysql_num_fields($result);
for($j =1; $j <=$num_rows; $j++)
{

$row = mysql_fetch_array($result);

print $row[0].$row[“some_attr”]. “
”;

}

• mysql_query can also be used to do inserts, etc.

Classes in PHP.

•	 Classes in PHP are in many ways similar to classes in

Java.
•	 To define a class one uses the keyword class as in:

class MyFirstClass {

var $myVariable = 0;

function getMyVariable() {

return $this->myVariable;

//note need to use $this.

}

}

•	 To create an instance of a class and invoke methods I can
then use:
var $myClass = new MyFirstClass();

echo “My 1st var: {$myClass->getMyVariable()}”;

Including Classes.

•	 Typically, you put the code for your class into a

file and then use a line like:

require(“MyClass.inc”);

//or more likely.

require_once(“MyClass.inc”);

•	 The require function is similar to include except
when it fails it gives a fatal error rather than a
warning. Also you cannot use require to include
remote files even if allow_url_fopen is enabled.

•	 require_once will not re-include the file if it has
already been included.

Constructors/Destructors.

•	 A couple slides back we saw we could set up an

initial value of a field variable of a class when we
declare it: var $myVariable = 0;

•	 You can also have a functions __construct and
__destruct to do initialization and clean-up.
function __construct($n=0) {

$this->myVariable = $n;

}

Private, Protected, Public.

•	 Member variables and member functions can be

declared private, protected or public:

private var $myField;

protected function myMethod() { /* some code*/}.

•	 Methods without any declaration are the same as
public.

•	 Private means only visible within the class.
•	 Protected is visible within the class or within

subclasses.
•	 Public means variable or method is visible to

anyone.

Static and Const
.
•	 The static keyword creates one instance of the

field or method for the object.

class Foo{ static $bob=1;}

echo “bob: {Foo::$bob}”;

•	 Within the class use self:: to refer to static
members.

•	 The const keyword can be used to define constants

for a class:
class Goo{ const blob=1;}
Notice no dollar sign. Can refer to this using Goo::blob .

•	 Values of constants cannot be changed.

Cloning.

• PHP has a command clone for cloning

objects:

$my_copy = clone $my_obj;

• To specify how the copying is done you can

write a __clone() method for your class.

Inheritance.

•	 Inheritance in PHP is very similar to Java.
•	 A PHP class can extend one other class.

class A{}
class B extends A {}

•	 PHP also has a notion of interface:
interface myInterface.
{

function method1($a, $b);

}

•	 A PHP class can implement multiple interfaces:
class C implements myInterfaceA, myInterfaceB {}.

•	 If you want to have a class with some but not all of its
methods defined. You can use the keyword abstract on
those methods which will be overriden in subclasses.

Referring to Parents, Final.

•	 Consider:

1.	 class A {function foo(){} } .
2.	 class B extends A {function foo(){} } .

•	 Within B this::foo() refers to the redefinition of
foo given in (2).

•	 Within B parent::foo() refers to class A’s
version of foo.

•	 To prevent a function from being overridden in a

subclass you can use the keyword final.

class A {final function foo() {} /* can’t override*/ }.

Exceptions.
•	 PHP supports try catch blocks like Java.

try {} catch(MyException $e){} catch(Exception
$ee){}.

•	 You can use the keyword throw to throw an
exception.
if($denom == 0){

throw new Exception(“divide by zero”);

}

•	 You can subclass Exception to create
custom exceptions.

