PHP: Databases and Classes

CS174
Chris Pollett
Sep 29, 2008.

Outline

e Databases

e Classes

Connecting to MySQL from PHP

To start a connect to a MySQL database one can issue the command:
$db = mysql_connect();

This function actually takes three parameters: the host, the username,
and the password.

These default to localhost, the process name PHP runs under, and
blank.

$db = mysql_connect(host, uname,pword);

Depending on how mysql is configured, the first example above might
work and saves some typing.

This function returns false if a connection is not made.
To close a database, one can call mysql_close();

Selecting a Database and queries

To select a database one calls:
mysql_select_db(“cars”);

One can then do a query with a command like:
$query =“SELECT * FROM Corvettes”;
$result = mysql_query($query);
$num_rows = mysql_num_rows($result);
$num_fields = mysql_num_fields($result);
for($j =1; $j <=$num_rows; $j++)

{

$row = mysql_fetch_array($result);
print $row[0].$Srow[“some_attr’]. “
7;
}

* mysql_query can also be used to do inserts, etc.

Classes in PHP

Classes in PHP are in many ways similar to classes in
Java.
To define a class one uses the keyword class as 1n:
class MyFirstClass {
var $myVariable = 0;
function getMyVariable() {
return $this->myVariable;
//note need to use $this

¥

To create an instance of a class and invoke methods I can
then use:

var $myClass = new MyFirstClass();
echo “My 1st var: {$myClass->getMyVariable()}”;

Including Classes

e Typically, you put the code for your class into a
file and then use a line like:
require(“MyClass.inc”);
//or more likely
require_once(“MyClass.inc”);
e The require function is similar to include except
when it fails it gives a fatal error rather than a

warning. Also you cannot use require to include
remote files even 1f allow_url_fopen is enabled.

e require_once will not re-include the file 1f it has
already been included.

Constructors/Destructors

* A couple slides back we saw we could set up an
initial value of a field variable of a class when we
declare it: var $myVariable = O;

e You can also have a functions __ construct and
__destruct to do 1nitialization and clean-up.
function __construct($n=0) {
$this->myVariable = $n;
}

Private, Protected, Public

Member variables and member functions can be
declared private, protected or public:

private var $myField;
protected function myMethod() { /* some code*/}

Methods without any declaration are the same as
public.

Private means only visible within the class.

Protected 1s visible within the class or within
subclasses.

Public means variable or method 1s visible to
anyone.

Static and Const

The static keyword creates one instance of the
field or method for the object.

class Foo{ static $bob=1;}

echo “bob: {Foo::$bob}”;
Within the class use self:: to refer to static
members.
The const keyword can be used to define constants
for a class:

class Goo{ const blob=1;}

Notice no dollar sign. Can refer to this using Goo::blob

Values of constants cannot be changed.

Cloning

 PHP has a command clone for cloning
objects:

$my_copy = clone $my_obj;

* To specity how the copying i1s done you can
write a __clone() method for your class.

Inheritance

Inheritance in PHP 1s very similar to Java.

A PHP class can extend one other class.
class A{}
class B extends A {}

PHP also has a notion of interface:
interface mylInterface

{
function method1($a, $b);

¥
A PHP class can implement multiple interfaces:
class C implements mylInterface A, mylInterfaceB {}

If you want to have a class with some but not all of its
methods defined. You can use the keyword abstract on
those methods which will be overriden in subclasses.

Reterring to Parents, Final

Consider:

1. class A {function foo(){} }

2. class B extends A {function foo(){} }
Within B this::foo() refers to the redefinition of
foo given in (2).
Within B parent::foo() refers to class A’s
version of foo.

To prevent a function from being overridden in a
subclass you can use the keyword final.

class A {final function foo() {} /* can’t override®*/ }

Exceptions

 PHP supports try catch blocks like Java.

try {} catch(MyException $e){} catch(Exception
$ee){}

* You can use the keyword throw to throw an
exception
if($denom == 0){
throw new Exception(“divide by zero”);

¥

* You can subclass Exception to create
custom exceptions.

