
Introduction to Flex and Air

CS174
Chris Pollett

Nov. 24, 2008.

Outline

• Flash, Flex, and Adobe Air
• Installation
• Simple Program
• Components

Flash
• Flash was originally a product to make it easy to produce

vector based animations on the web created around 1996
based on technology purchased by Macromedia (now
Adobe) from Futurewave.

• Flash programs are typically executed by the Flash player
plug-in which is (Sep 2008) available in some browser on
99% of desktops (Flash >7, for Flash 9 is 98%).

• It is used to create Rich Internet Applications (RIA) and
competes against AJAX, Silverlight (Windows), Applets
(Java), etc.

• It can also be used to do tracking (PIE -- Persistent
Identification Elements -- not turned off as often as
cookies)

• It has the advantage over AJAX that as the plug-in is
produced by one source, it runs the same in any browser. It
also supports richer kinds of media like Video. (YouTube).

Flex
• The main authoring tool for Flash is Flash

Professional, which is GUI IDE designed to make
it easy to create Flash.

• Flex is an Adobe product which gives a more
programmatic way to create Flash files.

• There is a Flex IDE, Flex Builder, which can also
be used, however, the basic SDK is open sourced
under the Mozilla License (can mix proprietary
and open source code).

• We will only look at the basic SDK which we will
access mainly from the command line.

• There are other open-source tool chains which can
be used to create .swf files, notably, OpenLaszlo.

Adobe Air
• Air is a product released by Adobe in Feb, 2008 to

make it easy to convert Flash programs into stand-
alone applications.

• Since Flash is cross-platform, these apps are as
well, and it makes it relatively easy to write code
which will work on PCs, Mac's, and Linux.

• Air apps can do more things then Web Flash apps.
For instance, you can access the file system, drag
and drop from the OS to your app, etc.

Installation
• Currently (Nov 2008), the release version of Flex is Flex

3.2.
• It can be found at:

http://www.adobe.com/products/flex/flexdownloads/
• Download this file and unzip it somewhere you know, say

C:\FlexSDK (Windows) or /usr/local/FlexSDK (*nix
including Mac)

• Then add C:\FlexSDK\bin or /usr/local/FlexSDK /bin to
your PATH variable (use control panel Windows, or edit
.profile, .cshrc, etc on *nix).

• Restart your shell.
• The programs to compile AIR apps come with Flex 3.2;

however, to test it you still need the AIR runtime:
http://get.adobe.com/air/

Creating a simple program

• Creating a Flex App involves writing a mxml file
which is a XML language which may be scripted
(as Javascript can be used to script HTML) using
Adobe’s Actionscript language (a variant of
Javascript).

• You then compile this code using the mxmlc
compiler.

• To include the compiled code into HTML file you
need to use an object/embed tag

A simple MXML file (test.mxml)
<?xml version="1.0" encoding="utf-8"?>
<mx:Application

xmlns:mx="http://www.adobe.com/2006/mxml"
width="100%" height="100%" >

 <mx:Button label="Hello World
Button"></mx:Button>

</mx:Application>

This could then be compiled by typing:
mxmlc test.mxml

This should produce a test.swf file.

Including your .swf file in a web
page

• To include your program in a web page you need
to an object tag.

• For instance, you could use:
<html>
<body>
 <object type="application/x-shockwave-flash" data="test.swf" width="320"

height="240">
 <param name="src" value="test.swf" />
 <!-- name="movie" works as well -->
 </object>
</body>
</html>

Making an Air App
• To make an Air App out of the last example first

we change the Application tag to
WindowedApplication:

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication

xmlns:mx="http://www.adobe.com/2006/mxml"
width="100%" height="100%" >

 <mx:Button label="Hello World
Button"></mx:Button>

</mx:WindowedApplication>
• Then we compile it using amxmlc rather than

mxmlc:
 amxmlc test.mxml

Application Descriptor File
• In order to package our swf file as an app we need to create a basic

application descriptor file.
• If our swf file is name.swf, typically, this will be called name-app.xml.
<?xml version="1.0" encoding="utf-8" standalone="no" ?>
<application xmlns="http://ns.adobe.com/air/application/1.5">
 <id>org.pollett.CS174Fall2008.HelloWorld</id>
<filename>test2</filename>
 <version>1.0</version>
 <initialWindow>
 <title>Hello World Example</title>
 <content>test2.swf</content>
 <visible>true</visible>
 </initialWindow>
</application>
• id -just needs to be unique to tell if our app is already installed.
• To run the app using the debug launcher one could then type:
adl test2-app.xml

Creating and Signing Your App
• As part of the app creation process you need to get your app signed.
• Usually, this would be by a trusted third-party (read cost you $$$) such

as Thawte or Verisign.
• This signature is checked when the app is actually installed.
• For the purposes of this class I will show you how to create a self-

signed app.
• First you need to create a self-signed cert that meets RSA's pkcs12

standards:
adt -certificate -cn ChrisPollett 1024-RSA mytest.p12 secret
• secret here is the password being used.
• Next we compile our app using the .p12 file:
adt -package -storetype pkcs12 -keystore mytest.p12 \ test2.air test2-

app.xml test2.swf
• Clicking on the .air file produced will install the app (at least on a

MAC).

Components

• Flex applications are built out of components.
• There are visual components such as Containers

and user interface controls
• There are non-visual components such as data

components and utility components.
• Let’s take a look at these.

Containers and UI controls
• A container is a component that can be used to hold other

components and might be used for layout purposes:
<mx:VBox>

<mx:Button label="Button 1" />
 <mx:Button label="Button 2" />
</mx:VBox>
There is also an HBox tag, tags for gridlayout, tiles, etc.
Layouts can be nested.

• UI Controls. We already seen Button. There are many
others such as ComboBox, Text, TextInput, etc.

• Properties of a Control can be set using either: tag
attributes, nested tags, or ActionScript.

• You often give tags id attributes. The UI control object can
then be used elsewhere as a variable (data binding)
provided the id name is is put in {}.

• See next slide for an examples.

Example 2
<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" width="100%"

height="100%" >
 <mx:Vbox>
 <mx:HBox>
 <mx:Button> <mx:label>Button 1</mx:label></mx:Button>
 <mx:Button label="Button 2" />
 </mx:HBox>
 <mx:ComboBox>
 <mx:dataProvider>
 <mx:ArrayCollection>
 <mx:String>Item 1</mx:String>
 <mx:String>Item 2</mx:String>
 <mx:String>Item 3</mx:String>
 </mx:ArrayCollection>
 </mx:dataProvider>
 </mx:ComboBox>
 <mx:Text text="hello" width="100" height="15" />
 <mx:Text text="{input.text}" width="150" height="20" />
 <mx:TextInput id="input" />
</mx:VBox>
</mx:Application>

