Introduction to Flex and Air

CS174
Chris Pollett
Nov. 24, 2008.



Outline

Flash, Flex, and Adobe Air
Installation
Simple Program

Components



Flash

Flash was originally a product to make it easy to produce
vector based animations on the web created around 1996
based on technology purchased by Macromedia (now
Adobe) from Futurewave.

Flash programs are typically executed by the Flash player
plug-in which 1s (Sep 2008) available in some browser on
99% of desktops (Flash >7, for Flash 9 1s 98%).

It 1s used to create Rich Internet Applications (RIA) and
competes against AJAX, Silverlight (Windows), Applets
(Java), etc.

It can also be used to do tracking (PIE -- Persistent
Identification Elements -- not turned off as often as
cookies)

It has the advantage over AJAX that as the plug-in 1s
produced by one source, it runs the same in any browser. It
also supports richer kinds of media like Video. (YouTube).



Flex

The main authoring tool for Flash is Flash
Professional, which 1s GUI IDE designed to make
it easy to create Flash.

Flex 1s an Adobe product which gives a more
programmatic way to create Flash files.

There 1s a Flex IDE, Flex Builder, which can also
be used, however, the basic SDK 1s open sourced
under the Mozilla License (can mix proprietary
and open source code).

We will only look at the basic SDK which we will
access mainly from the command line.

There are other open-source tool chains which can
be used to create .swi files, notably, OpenLaszlo.



Adobe Air

e Air is a product released by Adobe in Feb, 2008 to
make it easy to convert Flash programs into stand-
alone applications.

e Since Flash 1s cross-platform, these apps are as
well, and 1t makes 1t relatively easy to write code
which will work on PCs, Mac's, and Linux.

e Air apps can do more things then Web Flash apps.
For instance, you can access the file system, drag
and drop from the OS to your app, etc.



Installation

Currently (Nov 2008), the release version of Flex 1s Flex
3.2.

It can be found at:
http://www .adobe.com/products/flex/flexdownloads/

Download this file and unzip it somewhere you know, say
C:\FlexSDK (Windows) or /usr/local/FlexSDK (*nix
including Mac)

Then add C:\FlexSDK\bin or /usr/local/FlexSDK /bin to
your PATH variable (use control panel Windows, or edit
profile, .cshrc, etc on *nix).

Restart your shell.

The programs to compile AIR apps come with Flex 3.2;
however, to test it you still need the AIR runtime:

http://get.adobe.com/air/



Creating a simple program

e (Creating a Flex App involves writing a mxml file
which 1s a XML language which may be scripted
(as Javascript can be used to script HTML) using
Adobe’s Actionscript language (a variant of
Javascript).

* You then compile this code using the mxmlc
compiler.

* To include the compiled code into HTML file you
need to use an object/embed tag



A simple MXML file (test.mxml)

<?xml version="1.0" encoding="utf-8" 7>

<mx:Application
xmlns:mx="http://www .adobe.com/2006/mxml"

width="100%" height="100%" >

<mx:Button label="Hello World
Button"></mx:Button>

</mx:Application>

This could then be compiled by typing:
mxmlc test.mxml
This should produce a test.swt file.



Including your .swt file in a web
page

* To include your program in a web page you need
to an object tag.

* For instance, you could use:

<htmlI>
<body>

<object type="application/x-shockwave-flash" data="test.swf" width="320"
height="240">

<param name="src" value="test.swf" />
<!-- name="movie" works as well -->
</object>
</body>
</html>



Making an Air App

 To make an Air App out of the last example first
we change the Application tag to
WindowedApplication:

<?xml version="1.0" encoding="utf-8"7?>

<mx:WindowedApplication

xmlns:mx="http://www .adobe.com/2006/mxml"
width="100%" height="100%" >

<mx:Button label="Hello World
Button"></mx:Button>

</mx:WindowedApplication>

 Then we compile 1t using amxmlc rather than
mxmlc:

amxmlc test. mxml



Application Descriptor File

e In order to package our swf file as an app we need to create a basic
application descriptor file.

e If our swf file is name.swf, typically, this will be called name-app.xml.
<7xml version="1.0" encoding="utf-8" standalone="no" 7>
<application xmlns="http://ns.adobe.com/air/application/1.5">
<id>org.pollett.CS174Fall2008.HelloWorld</id>
<filename>test2</filename>
<version>1.0</version>
<initialWindow>
<title>Hello World Example</title>
<content>test2.swf</content>
<visible>true</visible>
</initialWindow>
</application>
e 1d -just needs to be unique to tell if our app is already installed.
e To run the app using the debug launcher one could then type:
adl test2-app.xml



Creating and Signing Your App

e As part of the app creation process you need to get your app signed.

e Usually, this would be by a trusted third-party (read cost you $$$) such
as Thawte or Verisign.

e This signature is checked when the app is actually installed.

e For the purposes of this class I will show you how to create a self-
signed app.

e First you need to create a self-signed cert that meets RSA's pkcs12
standards:

adt -certificate -cn ChrisPollett 1024-RSA mytest.p12 secret
e secret here is the password being used.
e Next we compile our app using the .p12 file:

adt -package -storetype pkcs12 -keystore mytest.p12 \ test2.air test2-
app.xml test2.swf

e Clicking on the .air file produced will install the app (at least on a
MAC).



K]

There are visual components such as Containers

Components

ex applications are built out of components.

and user interface controls

There are non-visual components such as data
components and utility components.

Let’s take a look at these.



Containers and Ul controls

A container 1s a component that can be used to hold other
components and might be used for layout purposes:
<mx:VBox>
<mx:Button label="Button 1" />
<mx:Button label="Button 2" />
</mx:VBox>
There is also an HBox tag, tags for gridlayout, tiles, etc.
Layouts can be nested.

UI Controls. We already seen Button. There are many
others such as ComboBox, Text, TextInput, etc.

Properties of a Control can be set using either: tag
attributes, nested tags, or ActionScript.

You often give tags 1d attributes. The UI control object can
then be used elsewhere as a variable (data binding)
provided the i1d name 1s 1s put in {}.

See next slide for an examples.



Example 2

<?xml version="1.0" encoding="utf-8" 7>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" width="100%"
height="100%" >

<mx:Vbox>
<mx:HBox>
<mx:Button> <mx:label>Button 1</mx:label></mx:Button>
<mx:Button label="Button 2" />
</mx:HBox>
<mx:ComboBox>
<mx:dataProvider>
<mx:ArrayCollection>
<mx:String>Item 1</mx:String>
<mx:String>Item 2</mx:String>
<mx:String>Item 3</mx:String>
</mx:ArrayCollection>
</mx:dataProvider>
</mx:ComboBox>
<mx:Text text="hello" width="100" height="15" />
<mx:Text text="{input.text}" width="150" height="20" />
<mx:TextInput id="input" />
</mx:VBox>
</mx:Application>



