
PHP: Functions, Patterns, Forms,

Files.

CS174.

Chris Pollett.

Sep 22, 2008.

Outline.

• More on PHP Arrays.
• Functions .
• Variable Scope.
• Pattern Matching.
• Form Handling.
• File Handling.

More on PHP Arrays.

•	 Last Wednesday, we saw the basics of creating/accessing an array in

PHP: $arr=array(1,2,3); echo $arr[2]; /*would print 3 */
•	 Recall also $carr = array(); //create an empty array.
•	 Arrays in PHP are similar to Perl hashes.
•	 The above way to create $arr can also be written in PHP as:

$arr = array(0=> 1, 1=>2, 2=>3);
•	 Like hashes we can do things like $arr = array(“joe”=> 5, “mary”

=>6);
•	 To get the keys and values we can use the functions: $keys =

array_keys($arr) and $values = array_values($arr);
•	 Arrays can also be created by an assignment: $barr[1] = 5; // creates

array $barr if doesn’t exist.
•	 If did the assignment $barr[] = 6; Then since the argument to [] wasn’t

specified PHP will assign $barr[2] = 6;

Yet More on PHP Arrays.

•	 You can call the unset function on the element in an array:

$list= array(2,4,6,8); unset($list[2]);
•	 Some useful array functions: count -- returns the number

of elements in an array, is_array, in_array, implode,
explode, sort.

• To see how implode/explode work consider:
$str=“this is a string”;
$words = explode(“ ”, $str); /*acts like split except here

the first argument is a string rather than a regular
expression. So words is an array(“this”, “is”, “a”,
“string”). PHP has a split function but not as fast, since
arg might be a regular expression. */

$str2 = implode(“ ”, $words); //undoes the explode.

Iterating Through Arrays.

•	 The function current can be used to return a pointer to the current

element in an array. The next function can be used to advance this
pointer and get its value:
$cities = array(“San Jose”, “San Diego”);

echo current($cities); // prints San Jose.

$another = next($cities); // $another is now San Diego;

•	 There are also the functions each, prev, end, and reset to facilitate
moving through array.

•	 The function each is similar to next except after advancing the current
pointer, it returns the old pointer as a two element array consisting of a
key/value pair.

•	 We saw last day that one can iterate through arrays using foreach($arr
as $val){…}

•	 PHP also supports code like
$lows = array(“Mon” => 23, “Tue” => 18);
foreach($lows as $day =>$temp)
{echo “$day lows were $temp”;}

Functions.

•	 The general format of a PHP functions is:

function name([parameter]){…}
For example,
function inc($i){return ++$i;}

•	 A return value can be sent back using a return call as in many
programming languages.

•	 You can modularize your code by putting several function definitions
into a file and then use the include function to include them into any
document that needs those functions.

• Parameters are passed by value. So the function call:
$b = inc($a); // leaves the value of $a unchanged.
• You can call by reference by using an ampersand:
$b =inc(&$a); //here the value of $a is changed (one is added to it).
•	 You can also create functions with pass by reference parameters:

function inc(&$i){…}

Variable Scope.
•	 The default scope of a variable in PHP is only within the function that it is

used. That is local scope:
$bob = 5;
function test()
{ $bob=6; echo $bob; //echo’s 6}
test();

echo $bob; //echo’s 5

•	 In order to access global variables within a local function one would need to
use the global declaration:
$bob =5;
 function test()
{

 global $bob; # if did not do bob would be NULL

$bob-6;

 echo $bob;

 }
test();

•	 PHP also supports static local variables. These preserve states between
function calls: function addone () {static $count =0; echo $count++;}

Pattern Matching.

•	 PHP supports Perl style regular expression
and POSIX regular expressions.

• For example,

$fruits = preg_split(“/:/”, “apples:oranges”);

//would act like Perl’s split.

•	 preg_match acts like acts like Javascript

match.

Types of web forms.

•	 Recall a basic web form looks like:

<form method=“get” action=“script.php”>
<input type=“text” name=“my_textfield”

size=“10” />
<input type=“hidden” name=“secret_data”

 value=“do not peak” />
<input type=“submit” name=“sendform”

value=“Send this Form” />

</form>

•	 The method can be get or post.
•	 The get method sends the fields as urlencoded name=value pairs

appended to the URL:
script.php?my_textfield=hello&secret_data=do%20not%20peak&sendform=

Send%20this%20Form
•	 Post variables are sent as part of the content of an HTTP POST

command (you won’t see this in URL bar).
•	 File upload forms must use post and in addition must set and encoding

type: <form method=“post” action=“script.php”
enctype=“multipart/form-data”><input type=“file” name=“my_file”
/>…</form>.

Built-in Globals.

•	 PHP makes available several important global variables which are

useful for server side scripts.
•	 The phpinfo() function can be used to find out all of these globals.
•	 Here are some of the main ones:

$_SERVER -- an array of information about the server like
$_SERVER[“SERVER_NAME”], $_SERVER [“DOCUMENT_ROOT”],
$_SERVER [“QUERY_STRING”], etc

$_ENV -- an array of info about the runtime environment: $_ENV[“PATH”],
$_ENV[“PWD”], etc.

$_REQUEST -- an array of the variables that have been get’d or post’s from
forms. So if $_SERVER[“QUERY_STRING”] was hi=there&hi2=there2
would have $_REQUEST[“hi”] == “there” and
$_REQUEST[“hi2”]=“there2”;

$_GET -- like $_REQUEST but only for get’d variables.

$_POST -- like $_REQUEST but for post’d variables.

•	 PHP can be configured with register_globals = On, in which case the
variable $hi would be a global with value “there”. This is a bit risky
security-wise.

File Reading.

• Since PHP is a server side technology it is allowed to

create, read, and write file on the server’s filesystem.

•	 To open a file for reading one can do:

$fileHandle = fopen(“my.dat”, “r”);
$file_string = fread($fileHandle, filesize(“my.dat”));
fclose($fileHandle);

•	 Here fread reads in its second parameter many bytes.
•	 To read in a single line from a file one can use:

$line = fgets($fileHandle, $max_num_bytes_line);
•	 Alternatively, one can read the whole file in as a string

using a single command like:

$string = file_gets_content(“my.dat”);

•	 Similarly, sometimes it is useful to read in the whole file as

an array of lines:

$lines = file(“my.dat”);

File Writing.

• File writing can be done in a similar fashion to file

reading in PHP.
$fileHandle = fopen(“my.dat”, “w”); // use “a”

for append.
fwrite($fileHandle, $out_data);

fclose($fileHandle);

• One can also write out a whole file based on a
string using:

file_put_contents(“out.dat”, $str);

File Locking.

•	 Unless you as a coder do something, it is completely

possible for two scripts to try to access the same file at the
same time.

•	 To prevent this you should call the flock function to get a
lock before you try to do something with a file:
$fp = fopen("/tmp/lock.txt", "w");
if (flock($fp, LOCK_EX)) {

// do an exclusive/write lock. use LOCK_SH (for shared/read lock)
fwrite($fp, "Write something here\n”);
flock($fp, LOCK_UN); // release the lock

}

else {echo "Couldn't lock the file !";} fclose($fp);

•	 Locks are released when fclose() is called.

