Subversion, More MV C pattern,
Caching

CS174
Chris Pollett
Nov. 17, 2008.

Outline

e Subversion
e Caching
e More MVC Pattern

Seeing who changed what

We have already seen how to generate a diff
between trunk and a local copy using svn diff.

To see a log of changes that have been made on
the repository, one can use a line like:
svn log #1in the local copy directory one wants to #see
changes for.
You can also add -v for verbose and -r to single
out revision numbers

To check out or update to old copies of the

repository you can use svn co -rXXX or svn up -
rXXX

To see line by line who wrote the line you can use
svn blame.

SVN and HTTP

 We mentioned that SVN can be configured to run over
HTTPS, we briefly mention some of what involved in
setting this up.
e First, you need to edit the httpd.cont file so that the
following two modules are loaded:
LLoadModule dav_module modules/mod_dav.so
LoadModule dav_svn_module modules/mod_dav_svn.so

* Next we need to tell Apache that if the url path begins with
/repos/ then use svn:
<Location /repos>
DAYV svn
SVNPath /var/svn/repository
</Location>

SVN Permissions

e The easiest/dumbest way now to authenticate svn is to use the basic
authentication that we used previously with .htacces files.

 So we would add to our <Location> directive lines like:
AuthType Basic

AuthName "Subversion repository"

AuthUserFile /etc/svn-auth-file

Require valid-user

And use htpasswd to add/modify passwords in that file.

e Itis probably slightly safer to send hashes of passwords
over the net, in which case rather than basic authentication
one should use Digest:

AuthType Digest

AuthName "Subversion repository"
AuthDigestDomain /svn/
AuthUserFile /etc/svn-auth-file
Require valid-user

SSL. and SVN

e The above set-up completely works from the server
perspective if https rather than http is being used.

e The svn client might ask you if you want to accept the
servers certificate.

e Itis also possible that the server is set up to ask for a .pem
file from the client (which might be cached for later use).

e Often you will want to allow public reading of the
repository but only authenticated, writing. This can be
achieved by using the <LimitExcept> tag within your
<Location> directive:

<LimitExcept GET PROPFIND OPTIONS REPORT>

Require valid-user
</LimitExcept>

Caching

Svn is an example of a service that we might be
running on our website that facilitates managing
our code.

In addition to 1t, so far we have a web-server and a
database server.

There are several other servers that we might use
on our site associated with caching.

One use for caching is to avoid database reads, by
caching objects read from the database.

In order to understand how this works, we need to
look at our MVC set-up again for our website.

The MVC Pattern

e So far we have split our web app into the
following units:

— A main index page, which loads a config page. This
page also decides which controller should be used.

— We have a directory of controllers each having its own
class, extending some base class, each controller might
be used to handle different kinds of requests: admin,
landing, post message, etc

— We have a directory of models one model handles each
mapping from database tables of a specific kind of
object. Again, models are classes each extending some
common base class

— Views -- these are mainly html pages which render our
site. Which view to use 1s chosen by the controller.

Other Common Units in a Web
Site

* We might have in our website:
— A directory with all our css files
— A directory with all our js files
— A directory of third party apps used

— A directory of elements -- these are portions of web-
pages that might be used across multiple views

— A directory of helpers -- these are classes of functions
which are designed to make it easier to output certain
Ul objects like select tags, etc.

— A directory of components -- these are shared between
controllers and implement certain common
functionality not involving a database model.

Object Relational Mappings

Typically, models are used to get objects into and out of a database.
As an example, a user might made many posts to a discussion board.
This 1s an example of a one-to-many relationship

We might have two database tables user and post. To represent this
relationship the post table might have a column uid as a foreign key
reference into the user table.

Now a User object might be modeled as PHP associative array
consisting of the name, and other fields of the user, one of these fields
being an array of posts objects:

Array("name" => "Bob", ..., "posts" => Array([0] => Array("title"
=> "Dark and Stormy Night", ...), [1]=>...))

An object relational mapping is a mapping between these kind of
objects and database tables.

Typically, besides one-to-many relationship, one might need to handle
many-to-many, belongs-To, and one-to-one relationships.

In pretty much all cases, marshalling an object requires several
database queries, which can be slow, so may be sped up by caching.

Memcached

Memcached (http://www.danga.com/memcached/)
allows you to create an in memory cache of data.

A memcache can be on a separate server from
either your database or your webserver.

Your web app connects to the memcache daemon
and checks i1f an 1item such as an object that might
have been obtained from a database using an
ORM mapping, is in the memcache. If it 1s you
can get them quickly, if it 1sn't then you go to the
database.

In PHP you can access a memcache daemon using
the PECL extension:
http://pecl.php.net/package/memcache

Using memcached

e To run the memcached daemon one can type a line like:
memcached -d -m 50 -1 127.0.0.1 -p 11211
Here: -d -- as daemon

-m -- number of megabytes

-1 -- location

-p -- port
e To use memcached within PHP one needs to create a memcache object:
$memcache = new Memcache();
e Next one needs to set-up the memcache server:
$memcache->addServer($host, $port, $persistent, $weight, $timeout, $retry_interval);
e To add something to the cache one could use a command like:
$memcache->set($key, $val, $flag, $expire);
// $flag is whether to compress the item in the store
//$expire - Unix timestamp, or seconds from present. O -don't expire

e To read from the cache one can use a line like:
$memcache->get($key);

Trivial Memcache Script

<html>

<head><title>Memcache Test</title></head>

<body>

<h1>Test</h1>

<?php
$memcache = new Memcache();
$memcache->addServer("localhost", 11211, true, 1, 1, 5);
$memcache->set("bob", "value", null, 60);
echo "<p>".$memcache->get("bob")."</p>";

7>

</body>

</html>

