
Subversion, More MVC pattern,
Caching

CS174
Chris Pollett

Nov. 17, 2008.

Outline
• Subversion
• Caching
• More MVC Pattern

Seeing who changed what
• We have already seen how to generate a diff

between trunk and a local copy using svn diff.
• To see a log of changes that have been made on

the repository, one can use a line like:
svn log #in the local copy directory one wants to #see

changes for.
• You can also add -v for verbose and -r to single

out revision numbers
• To check out or update to old copies of the

repository you can use svn co -rXXX or svn up -
rXXX

• To see line by line who wrote the line you can use
svn blame.

SVN and HTTP
• We mentioned that SVN can be configured to run over

HTTPS, we briefly mention some of what involved in
setting this up.

• First, you need to edit the httpd.conf file so that the
following two modules are loaded:

 LoadModule dav_module modules/mod_dav.so
 LoadModule dav_svn_module modules/mod_dav_svn.so
• Next we need to tell Apache that if the url path begins with

/repos/ then use svn:
<Location /repos>
 DAV svn
 SVNPath /var/svn/repository
</Location>

SVN Permissions
• The easiest/dumbest way now to authenticate svn is to use the basic

authentication that we used previously with .htacces files.
• So we would add to our <Location> directive lines like:
 AuthType Basic
 AuthName "Subversion repository"
 AuthUserFile /etc/svn-auth-file
 Require valid-user
And use htpasswd to add/modify passwords in that file.
• It is probably slightly safer to send hashes of passwords

over the net, in which case rather than basic authentication
one should use Digest:

AuthType Digest
 AuthName "Subversion repository"
 AuthDigestDomain /svn/
 AuthUserFile /etc/svn-auth-file
 Require valid-user

SSL and SVN
• The above set-up completely works from the server

perspective if https rather than http is being used.
• The svn client might ask you if you want to accept the

servers certificate.
• It is also possible that the server is set up to ask for a .pem

file from the client (which might be cached for later use).
• Often you will want to allow public reading of the

repository but only authenticated, writing. This can be
achieved by using the <LimitExcept> tag within your
<Location> directive:

<LimitExcept GET PROPFIND OPTIONS REPORT>
 Require valid-user
 </LimitExcept>

Caching
• Svn is an example of a service that we might be

running on our website that facilitates managing
our code.

• In addition to it, so far we have a web-server and a
database server.

• There are several other servers that we might use
on our site associated with caching.

• One use for caching is to avoid database reads, by
caching objects read from the database.

• In order to understand how this works, we need to
look at our MVC set-up again for our website.

The MVC Pattern
• So far we have split our web app into the

following units:
– A main index page, which loads a config page. This

page also decides which controller should be used.
– We have a directory of controllers each having its own

class, extending some base class, each controller might
be used to handle different kinds of requests: admin,
landing, post message, etc

– We have a directory of models one model handles each
mapping from database tables of a specific kind of
object. Again, models are classes each extending some
common base class

– Views -- these are mainly html pages which render our
site. Which view to use is chosen by the controller.

Other Common Units in a Web
Site

• We might have in our website:
– A directory with all our css files
– A directory with all our js files
– A directory of third party apps used
– A directory of elements -- these are portions of web-

pages that might be used across multiple views
– A directory of helpers -- these are classes of functions

which are designed to make it easier to output certain
UI objects like select tags, etc.

– A directory of components -- these are shared between
controllers and implement certain common
functionality not involving a database model.

Object Relational Mappings
• Typically, models are used to get objects into and out of a database.
• As an example, a user might made many posts to a discussion board.
• This is an example of a one-to-many relationship
• We might have two database tables user and post. To represent this

relationship the post table might have a column uid as a foreign key
reference into the user table.

• Now a User object might be modeled as PHP associative array
consisting of the name, and other fields of the user, one of these fields
being an array of posts objects:
Array("name" => "Bob", …, "posts" => Array([0] => Array("title"

=> "Dark and Stormy Night", …), [1]=>…))
• An object relational mapping is a mapping between these kind of

objects and database tables.
• Typically, besides one-to-many relationship, one might need to handle

many-to-many, belongs-To, and one-to-one relationships.
• In pretty much all cases, marshalling an object requires several

database queries, which can be slow, so may be sped up by caching.

Memcached
• Memcached (http://www.danga.com/memcached/)

allows you to create an in memory cache of data.
• A memcache can be on a separate server from

either your database or your webserver.
• Your web app connects to the memcache daemon

and checks if an item such as an object that might
have been obtained from a database using an
ORM mapping, is in the memcache. If it is you
can get them quickly, if it isn't then you go to the
database.

• In PHP you can access a memcache daemon using
the PECL extension:
http://pecl.php.net/package/memcache

Using memcached
• To run the memcached daemon one can type a line like:
memcached -d -m 50 -l 127.0.0.1 -p 11211
Here: -d -- as daemon
 -m -- number of megabytes
 -l -- location
 -p -- port

• To use memcached within PHP one needs to create a memcache object:
$memcache = new Memcache();

• Next one needs to set-up the memcache server:
$memcache->addServer($host, $port, $persistent, $weight, $timeout, $retry_interval);

• To add something to the cache one could use a command like:
$memcache->set($key, $val, $flag, $expire);

// $flag is whether to compress the item in the store
 //$expire - Unix timestamp, or seconds from present. 0 -don't expire

• To read from the cache one can use a line like:
 $memcache->get($key);

Trivial Memcache Script
<html>
<head><title>Memcache Test</title></head>
<body>
<h1>Test</h1>
<?php
 $memcache = new Memcache();
 $memcache->addServer("localhost", 11211, true, 1, 1, 5);
 $memcache->set("bob", "value", null, 60);
 echo "<p>".$memcache->get("bob")."</p>";
?>
</body>
</html>

