
PHP Data Types and Functions.

CS174.

Chris Pollett.

Sep 17, 2008.

Outline.

• General Syntax of PHP .
• Data Types and Operators.
• Outputting to the browser stream.

• Control Statements.
• Arrays.
• Functions.

General Syntax.
•	 Recall a section of PHP code is delimited with <?php …

code here …?>.
•	 The command include(“filename.php”); can be used to

include one document in another.
•	 All variables in PHP begin with a $ sign. Names of

variables are otherwise like in Perl or other common
programming languages.

•	 PHP can use either Perl, C++, or C comments: #, //, /* …
*/ .

Primitives.

•	 PHP has four scalar types: Boolean, integer, double, and

string.
•	 There are also two compound types: array and object and

two special types: resource and NULL.
•	 As with Javascript and Perl, PHP is dynamically typed: it

has no type definitions.
•	 An unassigned variable is sometimes called an unbound

variable and has value NULL. This can be coerced to one of
the other types depending on the context.

•	 To check if a variable is currently bound you can use the
IsSet($variable_name) function. This returns TRUE or
FALSE (one of the two Boolean values).

•	 You can also call error_reporting(15), to set PHP’s error
reporting level so that it prints unbound variables.

Integer, String, and Boolean Type.

•	 Integers in PHP correspond to C long’s (signed), so there size depends

on the size of a long on a given machine.
•	 This is usually 32 bits.
•	 PHP’s double type corresponds to C’s double and literals follow the

format for C (or Perl or Javascript) floating point literals: I.e., .345, 3E-
7, etc.

•	 Characters in PHP are single bytes (No Unicode!).
•	 String literal are built up out of these characters.
•	 PHP distinguish between single quote and double quote literals in the

same way that Perl does. So the variable in “Bob=$bob” is interpolated
but in ‘Bob=$bob’ is not.

•	 There are only two values for Boolean’s: TRUE or FALSE. As for
coercion, the empty string or a “0” or a “0.0” is interpreted as FALSE.
Otherwise strings evaluate to TRUE. Integers and double evaluate to
TRUE as long as they aren’t zero.

Arithmetic Operators,etc.

•	 PHP supports the usual arithmetic operators: +, -, *, /, %, ++, --.
•	 PHP also does type coercion.
•	 Division should be assumed to output a double if any fractional value

exists.
•	 Some useful predefined functions are: floor, ceil, round, srand, rand,

abs, min, and max.
•	 String concatenation is done with a “.”
•	 Some useful string operations are strlen, strcmp, strpos, substr, chop,

trim, ltrim, strtolower, strtoupper.
•	 Type conversion can be done using expressions like (int)$sum or

intval($sum) or settype($sum, integer).
•	 You can also check the type with is_int, is_integer, is_long, etc.
•	 Assignment operators are like in C, Java, etc.

Output.

•	 You can output text to be inserted into the
page using either of the commands: print or
echo.

•	 For example,
print “hi there”;

Control Statements.
• PHP supports:

–	 if, else if, else: For example,

if($a) print “hello”;

–	 switch case:

switch($a)

{
case 5:
echo	 “hello”;

 }
– for : for($a = 0; $a<10; $a++){echo “hello $a”;}
– while: while(!$var) { /*do something*/}
– do while: do {/*do something */} while (!$var);

Arrays.

•	 Arrays can be declared with the syntax:
$a = array(“hi”, 1, 2);

•	 You can nest arrays:
$b = array(“hi”, array(1,2), 2);

•	 You can dereference arrays as in most languages:
echo $a[0];

•	 You can cycle over elements of an array using foreach:
foreach($arr as $var){echo $var;}

More on PHP Arrays.

•	 Arrays in PHP are similar to Perl hashes.
•	 The above way to create $arr can also be written in PHP

as:

$arr = array(0=> 1, 1=>2, 2=>3);

•	 Like hashes we can do things like $arr = array(“joe”=> 5,
“mary” =>6);

•	 To get the keys and values we can use the functions: $keys
= array_keys($arr) and $values = array_values($arr);

•	 Arrays can also be created by an assignment: $barr[1] = 5;
// creates array $barr if doesn’t exist.

•	 If did the assignment $barr[] = 6; Then since the argument
to [] wasn’t specified PHP will assign $barr[2] = 6;

Yet More on PHP Arrays.

•	 You can call the unset function on the element in an array:

$list= array(2,4,6,8); unset($list[2]);
•	 Some useful array functions: count -- returns the number of

elements in an array, is_array, in_array, implode, explode,
sort.

• To see how implode/explode work consider:
$str=“this is a string”;
$words = explode(“ ”, $str); /*acts like split except here

the first argument is a string rather than a regular
expression. So words is an array(“this”, “is”, “a”,
“string”). PHP has a split function but not as fast, since
arg might be a regular expression. */

$str2 = implode(“ ”, $words); //undoes the explode.

Iterating Through Arrays.

•	 The function current can be used to return a pointer to the current

element in an array. The next function can be used to advance this
pointer and get its value:
$cities = array(“San Jose”, “San Diego”);

echo current($cities); // prints San Jose.

$another = next($cities); // $another is now San Diego;

•	 There are also the functions each, prev, end, and reset to facilitate
moving through array.

•	 The function each is similar to next except after advancing the current
pointer, it returns the old pointer as a two element array consisting of a
key/value pair.

•	 We saw last day that one can iterate through arrays using foreach($arr
as $val){…}

•	 PHP also supports code like
$lows = array(“Mon” => 23, “Tue” => 18);
foreach($lows as $day =>$temp)
{echo “$day lows were $temp”;}

Functions.

•	 The general format of a PHP functions is:

function name([parameter]){…}
For example,
function inc($i){return ++$i;}

•	 A return value can be sent back using a return call as in many
programming languages.

•	 You can modularize your code by putting several function definitions
into a file and then use the include function to include them into any
document that needs those functions.

• Parameters are passed by value. So the function call:
$b = inc($a); // leaves the value of $a unchanged.
• You can call by reference by using an ampersand:
$b =inc(&$a); //here the value of $a is changed (one is added to it).
•	 You can also create functions with pass by reference parameters:

function inc(&$i){…}

