PHP Data Types and Functions

CS174
Chris Pollett
Sep 17, 2008.



Outline

General Syntax of PHP

Data Types and Operators
Outputting to the browser stream
Control Statements

Arrays

Functions



General Syntax

Recall a section of PHP code 1s delimited with <?php ...
code here ...7>.

The command include(*“filename.php”); can be used to
include one document in another.

All variables in PHP begin with a $ sign. Names of
variables are otherwise like in Perl or other common
programming languages.

PHP can use either Perl, C++, or C comments: #,//,/* ...

.



Primitives

PHP has four scalar types: Boolean, integer, double, and
string.

There are also two compound types: array and object and
two special types: resource and NULL.

As with Javascript and Perl, PHP i1s dynamically typed: it
has no type definitions.

An unassigned variable is sometimes called an unbound
variable and has value NULL. This can be coerced to one of
the other types depending on the context.

To check if a variable 1s currently bound you can use the
IsSet($variable name) function. This returns TRUE or
FALSE (one of the two Boolean values).

You can also call error_reporting(15), to set PHP’s error
reporting level so that it prints unbound variables.



Integer, String, and Boolean Type

Integers in PHP correspond to C long’s (signed), so there size depends
on the size of a long on a given machine.

This is usually 32 bits.
PHP’s double type corresponds to C’s double and literals follow the

format for C (or Perl or Javascript) floating point literals: I.e., .345, 3E-
7, etc.

Characters in PHP are single bytes (No Unicode!).
String literal are built up out of these characters.

PHP distinguish between single quote and double quote literals in the
same way that Perl does. So the variable in “Bob=3$bob” is interpolated
but in ‘Bob=3$bob’ is not.

There are only two values for Boolean’s: TRUE or FALSE. As for
coercion, the empty string or a “0” or a “0.0” is interpreted as FALSE.
Otherwise strings evaluate to TRUE. Integers and double evaluate to
TRUE as long as they aren’t zero.



Arithmetic Operators etc

PHP supports the usual arithmetic operators: +, -, *,/, %, ++, --.
PHP also does type coercion.

Division should be assumed to output a double if any fractional value
exIsts.

Some useful predefined functions are: floor, ceil, round, srand, rand,
abs, min, and max.

(Y

String concatenation is done with a “.

Some useful string operations are strlen, strcmp, strpos, substr, chop,
trim, ltrim, strtolower, strtoupper.

Type conversion can be done using expressions like (int)$sum or
intval($sum) or settype($sum, integer).

You can also check the type with is_int, is_integer, is_long, etc.
Assignment operators are like in C, Java, etc.



Output

* You can output text to be inserted into the
page using either of the commands: print or
echo

* For example,

print “hi there”;



Control Statements

 PHP supports:
— 1if, else if, else: For example,
if($a) print “hello”;
— switch case:
switch($a)

{

case 5:
echo “hello”;

}
— for : for($a = 0; $a<10; $a++){echo “hello $a”’;}
— while: while(!$var) { /*do something*/}
— do while: do {/*do something */} while (!$var);



Arrays

Arrays can be declared with the syntax:
$a = array(“hi”, 1, 2);

You can nest arrays:
$b = array(“hi”, array(1,2), 2);

You can dereference arrays as in most languages:
echo $a[0];

You can cycle over elements of an array using foreach:
foreach($arr as $var){echo $var;}



More on PHP Arrays

Arrays in PHP are similar to Perl hashes.

The above way to create $arr can also be written in PHP
as:

$arr = array( 0=> 1, 1=>2, 2=>3);
Like hashes we can do things like $arr = array(“joe”=> 5,
“mary” =>60);
To get the keys and values we can use the functions: $keys
= array_keys($arr) and $values = array_values($arr);

Arrays can also be created by an assignment: $barr[1] = 5;
// creates array $barr if doesn’t exist.

If did the assignment $barr[] = 6; Then since the argument
to [] wasn’t specified PHP will assign $barr[2] = 6;



Yet More on PHP Arrays

You can call the unset function on the element in an array:
$list= array(2.,4,6,8); unset($list[2]);

Some useful array functions: count -- returns the number of
elements 1in an array, is_array, in_array, implode, explode,
Sort.

To see how implode/explode work consider:
$str="this is a string”’;

$words = explode(* 7, $str); /*acts like split except here
the first argument 1s a string rather than a regular
expression. So words 1s an array(“this”, “1s”, “a”,
“string””). PHP has a split function but not as fast, since

arg might be a regular expression. */
, $words); //undoes the explode.

¢ 9

¢ 9

$str2 = implode(



Iterating Through Arrays

The function current can be used to return a pointer to the current
element in an array. The next function can be used to advance this
pointer and get its value:

$cities = array(“San Jose”, “San Diego”);

echo current($cities); // prints San Jose.

$another = next($cities); / $another is now San Diego;
There are also the functions each, prev, end, and reset to facilitate
moving through array.

The function each is similar to next except after advancing the current
pointer, it returns the old pointer as a two element array consisting of a
key/value pair.

We saw last day that one can iterate through arrays using foreach($arr
as $val){...}
PHP also supports code like

$lows = array(“Mon” => 23, “Tue” => 18);

foreach($lows as $day =>$temp )

{echo “$day lows were $temp”’;}



Functions

e The general format of a PHP functions is:
function name([parameter]){...}
For example,
function inc($i){return ++9%i;}
e A return value can be sent back using a return call as in many
programming languages.

* You can modularize your code by putting several function definitions
into a file and then use the include function to include them into any
document that needs those functions.

e Parameters are passed by value. So the function call:

$b = inc($a); // leaves the value of $a unchanged.

* You can call by reference by using an ampersand:

$b =inc(&$a); //here the value of $a is changed (one is added to it).

* You can also create functions with pass by reference parameters:
function inc(&$1)4...}






