
Cascading Style Sheets.

CS174.

Chris Pollett.

Sep 10, 2008.

Outline.

• Server Side Includes.
• Cascading Style Sheets.

Server Side Includes (SSI)
.
•	 So far in this class, we’ve learned a little about how the

web server works and XHTML.
•	 We’ll talk a little more about XHTML in a moment…
•	 But first, let’s consider a minimal way to make web-pages

more dynamic.
•	 Server Side Includes are a minimal programming language

(not Turing complete) that is supported by both Apache
and IIS.

•	 They illustrate several of the concepts we’ll see later for
more supped up server side languages.

Getting (SSI) running.

•	 To get Apache to use its processor for SSI directives one needs the lines

AddType text/html .shtml .
AddHandler server-parsed .shtml .

in the httpd.conf file .
•	 At the directory level to say SSI is allowed, you, within <directory> tags you

add the line:

Options +Includes.

•	 This line can also be added within .htaccess files.
•	 The default extension for files containing SSI directives is .shtml . If you’d like

to use .html instead, then in your httpd.conf file you need the line:

XBitHack on
.

•	 The file that contains the SSI directives need also to have execute privileges
set for the WebServer user.

The SSI Commands.
• A basic SSI directive has the syntax:
<!--#element attribute=value attribute=value ... -->
•	 element can be one of config, cmd, echo, elsif, else, endif,

exec, if, flastmod, include, set .
•	 cmd and exec are for executing shell command or scripts

and are typically disabled.
• echo and set are used for printing and setting a variable

<!--#set var=‘bob’ value=‘hello’ -->
.
<!--#echo var=‘bob’ -->.

•	 The server also automatically sets some variables

according to the Common Gateway Interface (CGI):

<!--#echo var=‘QUERY_STRING’ -->.

<!--#set var=‘bob’ value=‘hello${DATE_LOCAL}’ -->.

More on SSI command.
• The command config can be used to format dates as well as error messages:
<!--#config errmsg="[This is what the SSI error message will look like]" -->
<!--#config timefmt="%d, %Y" -->
This file was last modified <!--#flastmod file="ssi.shtml" -->.
• By the way this also show what flastmod is for.
• include can be used to include one file within another and can allow for simple

templating:
<!--#include virtual="footer.html" -->
• if, elif, else operate like in similar to in Java but can’t nest:
<!--#if expr="\"${QUERY_STRING}\" = \"\" ||
 \"${QUERY_STRING}\" = \"print\" " -->
<!--#include virtual="classpage.html" -->
<!--#else -->
<!--#include virtual="${QUERY_STRING}" -->
<!--#endif -->

Stylesheets.

•	 We now return to talking about XHTML, in particular, how to control the presentation

of XHTML documents with stylesheets.
•	 Stylesheets are used to specify the look of the page and its elements.
•	 For instance, one can globally control things like margins, indentation, etc.
•	 They can be used to support the idea of separating structure of content from how it is

presented.
•	 Cascading Style Sheets (CSS) are the standard way to do this for XHTML documents.
•	 CSS comes in three specs: CSS1, CSS2, CSS3, each adding more features to the last.
•	 Most modern browsers support CSS1 and parts of CSS2.
•	 The basic concept in a stylesheet is that of the value of a property that a tag has.
•	 Cascading refers to how settings of this value in high level stylesheets can be overrriden

in lower level style sheets.

Levels of Style Sheets.

•	 So what are the levels of stylesheets?

–	 inline, document, external.
•	 inline --sets property value for single tag. (deprecated XHTML1.1) For

example,

<p style=“color: red”>red paragraph</p>
.

•	 document -- sets property value for the whole document.
•	 external -- sets property value for several documents till value is changed.
•	 If no style information is available for a given property the browser will use a

default value.
•	 It is often useful to use the same stylesheet for several documents. The MIME

type for stylesheets is text/css. You can link a stylesheet file into an xhtml file
with a line like:

< link rel=“stylesheet” type=“text/css” href=“mystyles.css” />.
•	 Styles can be validated at the W3C site.

Basics of Styles.

•	 The basic inline style command looks like:

<tag style=“property_1: value1 ; property2: value2; …” > .
• The basic document level style in the head of the document looks like
<style type=“text/css” > .

/* here is a comment */.
rule_list .

</style>
•	 Each rule has the format .

selector {property_1: value1 ; property2: value2; …}
•	 External style sheets are similar to document level styles except you

don’t need the style tags.

Examples of Simple Selectors.

h1 {font-size: 24pt} /* would apply to all h1 tags in the
document */ .

h2, h3 {font-size: 14pt} /* notice applies to both h2 and h3
tags */ .

You can also specify that styles should only apply to elements
in certain positions within the file:

body b i {font-size: 30pt;} /* only for bolded italic’d text
within file, doesn’t work NS7*/ .

Class selectors.

A class is defined in a style element by putting a period with a name after
it:

p.normal {prop_list1}
.
p.narrow {prop_list2}
.

To use we do:

<p class=“normal”>normal look text</p>
.

One can also have generic selectors:

.red {color:red}
.
These can be used with multiple tags
.
<h3 class=“red”></h3> <p class=“red”></p>

ID Selectors
.

•	 In a similar way to class selectors, one can use a “#” to specify an id
selector .

p#sec1 {prop_list2}

To use we do:

<p id=“sec1”>section1 text</p>

•	 Although only one id attribute (for instance, sec1) of a given value can
appear in a document, such a selector may occur in an external style
and thus be applied to id tags with that name in several documents.

•	 For instance, one might specify p#abstract. A typical document has
only one abstract but you could use the same style for several
documents.

