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Javascript

This language was originally developed at Netscape and first appeared
in Netscape?2.

It has gone through version 1.0 to 1.8 and has been standardized as
ECMA-262 and ISO-16262.

The standardized version 1s sometimes called ECMAscript; the
Microsoft version is sometimes called JScript.

It can be used on both the client and on the server.

We will use it mainly on the client except for a little bit at the end of
the semester.
Only the name is similar to Java. Unlike Java:

— 1t is a loosely rather than strongly type language.

— the object model is simpler

— 1t 1is interpreted



Uses of Javascript

To do some of the processing of web pages on the client-
side rather than make the server do it. For instance one
might want to dynamically change the look of a page
without going back to the server.

To perform actions when certain events occur on the
client-side. For instance, when a web-page 1s submitted it
could be used to validate the page.

To do simple networking in the background transparently
to the user.

It can be often used as a smaller alternative to a Java
applet.



Objects 1n Javascript

Javascript objects are collections of properties.

Each property is either a data property or a method
property (a method).

Data properties appear in two categories: primitive values
and references to other objects.

We access objects in Javascript by using variables by
reference.

All primitive values are accessed directly by value.

There 1s a root object in Javascript called Object. It is the
ancestor through something know as prototype inheritance
of all other objects in Javascript.



General Overview

. Many details on Javascript can be found at:
http://www .webreference.com/javascript/reference/core_ref/contents.html

e Javascripts can be either directly or indirectly embedded in a document.

— Directly
<script type="text/javascript”>
<!-- hide from old browsers
-- code --
/I -->
</script>

— Indirectly
<script type="“text/javascript” src="“myscript.js” />

e Identifiers (i.e., names) must begin with a letter, an underscore, or a $ and subsequent
characters may be one of these three or numbers.

e Javascript has 25 reserved words: break, case, catch, continue, default, delete, do, else,
finally, for, function, if, in, instanceof, new, return, switch, this, throw, try, typeof, var,
void, while, with.

e Javascript has additional keywords which are reserved for future use, as well as
predefined words such as alert, open, java, and self.

e Javascript supports /*...*/ and // for comments.

* Semicolons to end lines in Javascript are optional. Beware:
return
x; // has the effect of just return!



Example Javascript and HTML
document

<html>
<head><title>test</title>

<meta name="description” value="this example illustrates how Javascripts are executed both when the document is loaded
and on the occurrence of events” />

<script type="text/javascript" ><!--
function sayHello()

{
alert("hi there");
b
/-->
</script>
</head><body><form><input type="button" value="test" onClick="return sayHello();" /><!-- responds to events --

></form>
<script type="text/javascript" ><!--
for(i=0;i<100; i++)
{
document.writeln("<p>hi"+i+"</p>");
} // run when document loads
-->
</script></body>
</html>



Primitives
Javascript has 5 primitive types: Number, String, Boolean, Undefined and
Null.

Javascript has predefined objects corresponding to Number, String and
Boolean. Each of these is wrappers for a value of the corresponding primitive
type.

Javascript will do type coercion between objects of type String and Number.

A number literal can be either a integer or a float. You can use hex for
integers. If it is a float it can use scientific notation:

7, 0xff, 0XFF, 7.2, .73,-.23,7TE2, Te2, 7.2e-2, etc.
A string literal can be delimited either by a single or double quote. “Hi there”,
‘hi there’, 7, “\n”, ‘V’\\’, etc.
There are two Boolean literals: true or false.

The only Null literal is null which can be coerced to false as a Boolean and 0
as an Number.

The only literal of type Undefined is undefined. It can be coerced to false as a
Boolean and NaN as a Number.



Variables

e The Javascript interpreter determines the type of a variable
as needed by the circumstance.

e Variables can be declared either by assigning it a value or
by explicitly declaring it:
var my Variable, pi=3.14;
// explicit declarations effect the scope of the variable



Numeric Operators and Objects

* Numeric operators in Javascript are similar to Java or C: +,
-, %/, %,++, --, etc.

e The Math object has many useful built-in methods and
properties for Number objects. For example, Math.sin(x),
Math.PI, Math.random, Math.abs, etc.

e The Number object has a useful collection of Number
properties. Number. MIN_VALUE,
Number MAX VALUE, Number.NaN, etc. It also has the
toString method. For example, x=10; y= x.toString();
z=x.toString(2); //binary representation



Strings and Type Conversion

 The + sign is used to concatenate strings.
first = “hello”
second = first + “bye” // “hellobye”

e The String object also has useful methods such as: charAt, indexOf, substring,
toLowerCase, toUpperCase, etc. A String object also always has a length

property
*  When the value of one type is used in a situation where another type is
required, Javascript tries to implicitly coerce the type into the required one.

Ex “August” + 1977 // “August1977”
1977 + “August” // “1977August”
7*¢3” =21
One can also explicitly, do type conversion.
var str_value = String(value); // Might want to use toString

var number = Number(aString); / Might want to use parselnt or parseFloat



typeof, Assignments, and the Date
Object

The operators
typeof x //and
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typeof(x) /* returns either “boolean”, “string”, “number” if x is of primitive
type, it returns “object” if X is null or an object; and it returns “undefined”
if x 1s not defined*/

Assignments in Javascript are similar to C or Java:

a++; a+=2; a--; a-=2;a=b +57;
The Date object is useful for getting information about the current date
and time:

var today = new Date();

Date supports methods: toL.ocaleString, getDate, getMonth,
getDay ,getFull Year, getTime, getHours, getMinutes, getSeconds,
getMilliseconds



[/O

e The default output target of a Javascript I/O is the browser window.
e Javascript models an XHTML document as a Document object.
e The window in which this document is displayed is a Window object.

e  Window has two properties document and window. Here document refers to
the current Document object.

e  Document has several useful methods for I/O. write, writeln.

e In addition to this method of I/O one can also create dialogs with the alert,
prompt, and confirm methods.

Ex:

name = prompt(‘“What 1s your name”, “John Smith”)



Control Statements

Javascript supports the relational operators: ==, !=, <, >,
<=, >=, ===, !::

The last two operators disallow conversion of either
operand. So “3” === 3 evaluate to false.

Javascript also supports the operators &&, I, !
Selection statements in Javascript are like in C/Java: if( a

>b){} else{}

Javascript supports switch/case as in C/Java
Javascript supports while, for and do-while loops



Objects

e Objects can be created with an initial declaration like:
var my_object = new Object();
e This object would initially have no properties. To delete an object use:
delete my_object;
* An assignment like:
my_object.make= “V6” /* would then give a property make a value. */
//can access as
p = my_object[“make”]
q = my_object.make
* You can also nest objects this:
my_object.subObject = new Object();
* You can loop over properties using:
for(var prop in my_object){...}



Arrays

» Arrays can be created with the syntax:
var myArr = new Array(1, 2, “hello”)
var myArr = new Array(100);

var myArr = [1,2,3];

//to access

myArr[0]

//to determine length

myArr.length






