Introduction to Javascript

CS174
Chris Pollett
Oct. 6, 2008.

Outline

Introduction
General Syntax
Primitives

I/0

Control Statements
Objects

Arrays

Javascript

This language was originally developed at Netscape and first appeared
in Netscape?2.

It has gone through version 1.0 to 1.8 and has been standardized as
ECMA-262 and ISO-16262.

The standardized version 1s sometimes called ECMAscript; the
Microsoft version is sometimes called JScript.

It can be used on both the client and on the server.

We will use it mainly on the client except for a little bit at the end of
the semester.
Only the name is similar to Java. Unlike Java:

— 1t is a loosely rather than strongly type language.

— the object model is simpler

— 1t 1is interpreted

Uses of Javascript

To do some of the processing of web pages on the client-
side rather than make the server do it. For instance one
might want to dynamically change the look of a page
without going back to the server.

To perform actions when certain events occur on the
client-side. For instance, when a web-page 1s submitted it
could be used to validate the page.

To do simple networking in the background transparently
to the user.

It can be often used as a smaller alternative to a Java
applet.

Objects 1n Javascript

Javascript objects are collections of properties.

Each property is either a data property or a method
property (a method).

Data properties appear in two categories: primitive values
and references to other objects.

We access objects in Javascript by using variables by
reference.

All primitive values are accessed directly by value.

There 1s a root object in Javascript called Object. It is the
ancestor through something know as prototype inheritance
of all other objects in Javascript.

General Overview

. Many details on Javascript can be found at:
http://www .webreference.com/javascript/reference/core_ref/contents.html

e Javascripts can be either directly or indirectly embedded in a document.

— Directly
<script type="text/javascript”>
<!-- hide from old browsers
-- code --
/I -->
</script>

— Indirectly
<script type="“text/javascript” src="“myscript.js” />

e Identifiers (i.e., names) must begin with a letter, an underscore, or a $ and subsequent
characters may be one of these three or numbers.

e Javascript has 25 reserved words: break, case, catch, continue, default, delete, do, else,
finally, for, function, if, in, instanceof, new, return, switch, this, throw, try, typeof, var,
void, while, with.

e Javascript has additional keywords which are reserved for future use, as well as
predefined words such as alert, open, java, and self.

e Javascript supports /*...*/ and // for comments.

* Semicolons to end lines in Javascript are optional. Beware:
return
x; // has the effect of just return!

Example Javascript and HTML
document

<html>
<head><title>test</title>

<meta name="description” value="this example illustrates how Javascripts are executed both when the document is loaded
and on the occurrence of events” />

<script type="text/javascript" ><!--
function sayHello()

{
alert("hi there");
b
/-->
</script>
</head><body><form><input type="button" value="test" onClick="return sayHello();" /><!-- responds to events --

></form>
<script type="text/javascript" ><!--
for(i=0;i<100; i++)
{
document.writeln("<p>hi"+i+"</p>");
} // run when document loads
-->
</script></body>
</html>

Primitives
Javascript has 5 primitive types: Number, String, Boolean, Undefined and
Null.

Javascript has predefined objects corresponding to Number, String and
Boolean. Each of these is wrappers for a value of the corresponding primitive
type.

Javascript will do type coercion between objects of type String and Number.

A number literal can be either a integer or a float. You can use hex for
integers. If it is a float it can use scientific notation:

7, 0xff, 0XFF, 7.2, .73,-.23,7TE2, Te2, 7.2e-2, etc.
A string literal can be delimited either by a single or double quote. “Hi there”,
‘hi there’, 7, “\n”, ‘V’\\’, etc.
There are two Boolean literals: true or false.

The only Null literal is null which can be coerced to false as a Boolean and 0
as an Number.

The only literal of type Undefined is undefined. It can be coerced to false as a
Boolean and NaN as a Number.

Variables

e The Javascript interpreter determines the type of a variable
as needed by the circumstance.

e Variables can be declared either by assigning it a value or
by explicitly declaring it:
var my Variable, pi=3.14;
// explicit declarations effect the scope of the variable

Numeric Operators and Objects

* Numeric operators in Javascript are similar to Java or C: +,
-, %/, %,++, --, etc.

e The Math object has many useful built-in methods and
properties for Number objects. For example, Math.sin(x),
Math.PI, Math.random, Math.abs, etc.

e The Number object has a useful collection of Number
properties. Number. MIN_VALUE,
Number MAX VALUE, Number.NaN, etc. It also has the
toString method. For example, x=10; y= x.toString();
z=x.toString(2); //binary representation

Strings and Type Conversion

 The + sign is used to concatenate strings.
first = “hello”
second = first + “bye” // “hellobye”

e The String object also has useful methods such as: charAt, indexOf, substring,
toLowerCase, toUpperCase, etc. A String object also always has a length

property
* When the value of one type is used in a situation where another type is
required, Javascript tries to implicitly coerce the type into the required one.

Ex “August” + 1977 // “August1977”
1977 + “August” // “1977August”
7*¢3” =21
One can also explicitly, do type conversion.
var str_value = String(value); // Might want to use toString

var number = Number(aString); / Might want to use parselnt or parseFloat

typeof, Assignments, and the Date
Object

The operators
typeof x //and

29 46 2% €6

typeof(x) /* returns either “boolean”, “string”, “number” if x is of primitive
type, it returns “object” if X is null or an object; and it returns “undefined”
if x 1s not defined*/

Assignments in Javascript are similar to C or Java:

a++; a+=2; a--; a-=2;a=b +57;
The Date object is useful for getting information about the current date
and time:

var today = new Date();

Date supports methods: toL.ocaleString, getDate, getMonth,
getDay ,getFull Year, getTime, getHours, getMinutes, getSeconds,
getMilliseconds

[/O

e The default output target of a Javascript I/O is the browser window.
e Javascript models an XHTML document as a Document object.
e The window in which this document is displayed is a Window object.

e Window has two properties document and window. Here document refers to
the current Document object.

e Document has several useful methods for I/O. write, writeln.

e In addition to this method of I/O one can also create dialogs with the alert,
prompt, and confirm methods.

Ex:

name = prompt(‘“What 1s your name”, “John Smith”)

Control Statements

Javascript supports the relational operators: ==, !=, <, >,
<=, >=, ===, !::

The last two operators disallow conversion of either
operand. So “3” === 3 evaluate to false.

Javascript also supports the operators &&, I, !
Selection statements in Javascript are like in C/Java: if(a

>b){} else{}

Javascript supports switch/case as in C/Java
Javascript supports while, for and do-while loops

Objects

e Objects can be created with an initial declaration like:
var my_object = new Object();
e This object would initially have no properties. To delete an object use:
delete my_object;
* An assignment like:
my_object.make= “V6” /* would then give a property make a value. */
//can access as
p = my_object[“make”]
q = my_object.make
* You can also nest objects this:
my_object.subObject = new Object();
* You can loop over properties using:
for(var prop in my_object){...}

Arrays

» Arrays can be created with the syntax:
var myArr = new Array(1, 2, “hello”)
var myArr = new Array(100);

var myArr = [1,2,3];

//to access

myArr[0]

//to determine length

myArr.length

