
Introduction to Javascript.

CS174
.
Chris Pollett.

Oct. 6, 2008.

Outline.

• Introduction.
• General Syntax .
• Primitives.
• I/O .
• Control Statements.
• Objects.
• Arrays .

Javascript.

•	 This language was originally developed at Netscape and first appeared

in Netscape2.
•	 It has gone through version 1.0 to 1.8 and has been standardized as

ECMA-262 and ISO-16262.
•	 The standardized version is sometimes called ECMAscript; the

Microsoft version is sometimes called JScript.
•	 It can be used on both the client and on the server.
•	 We will use it mainly on the client except for a little bit at the end of

the semester.
•	 Only the name is similar to Java. Unlike Java:

–	 it is a loosely rather than strongly type language.
–	 the object model is simpler.
–	 it is interpreted.

Uses of Javascript.

•	 To do some of the processing of web pages on the client-

side rather than make the server do it. For instance one
might want to dynamically change the look of a page
without going back to the server.

•	 To perform actions when certain events occur on the
client-side. For instance, when a web-page is submitted it
could be used to validate the page.

•	 To do simple networking in the background transparently
to the user.

•	 It can be often used as a smaller alternative to a Java
applet.

Objects in Javascript
.
•	 Javascript objects are collections of properties.
•	 Each property is either a data property or a method

property (a method).
•	 Data properties appear in two categories: primitive values

and references to other objects.
•	 We access objects in Javascript by using variables by

reference.
•	 All primitive values are accessed directly by value.
•	 There is a root object in Javascript called Object. It is the

ancestor through something know as prototype inheritance
of all other objects in Javascript.

General Overview.
•	 Many details on Javascript can be found at:

http://www.webreference.com/javascript/reference/core_ref/contents.html
•	 Javascripts can be either directly or indirectly embedded in a document.

–	 Directly

<script type=“text/javascript”>

<!-- hide from old browsers

-- code --
// -->

</script>

–	 Indirectly

<script type=“text/javascript” src=“myscript.js” />

•	 Identifiers (i.e., names) must begin with a letter, an underscore, or a $ and subsequent
characters may be one of these three or numbers.

•	 Javascript has 25 reserved words: break, case, catch, continue, default, delete, do, else,
finally, for, function, if, in, instanceof, new, return, switch, this, throw, try, typeof, var,
void, while, with.

•	 Javascript has additional keywords which are reserved for future use, as well as
predefined words such as alert, open, java, and self.

•	 Javascript supports /*…*/ and // for comments.
•	 Semicolons to end lines in Javascript are optional. Beware:

return
x; // has the effect of just return!

Example Javascript and HTML

document.

<html>

<head><title>test</title>

<meta name=“description” value=“this example illustrates how Javascripts are executed both when the document is loaded

and on the occurrence of events” />
<script type="text/javascript" ><!--

function sayHello()
{

alert("hi there");
}

//-->
</script>
</head><body><form><input type="button" value="test" onClick="return sayHello();" /><!-- responds to events --

></form>
<script type="text/javascript" ><!--
for(i = 0; i<100; i++)
{

document.writeln("<p>hi"+i+"</p>");
} // run when document loads
-->
</script></body>
</html>

Primitives.

•	 Javascript has 5 primitive types: Number, String, Boolean, Undefined and

Null.
•	 Javascript has predefined objects corresponding to Number, String and

Boolean. Each of these is wrappers for a value of the corresponding primitive
type.

•	 Javascript will do type coercion between objects of type String and Number.
•	 A number literal can be either a integer or a float. You can use hex for

integers. If it is a float it can use scientific notation:

7, 0xff, 0XFF, 7.2, .73, -.23, 7E2, 7e2, 7.2e-2, etc.

•	 A string literal can be delimited either by a single or double quote. “Hi there”,
‘hi there’, ‘”’, “\n”, ‘\’\\’, etc.

•	 There are two Boolean literals: true or false.
•	 The only Null literal is null which can be coerced to false as a Boolean and 0

as an Number.
•	 The only literal of type Undefined is undefined. It can be coerced to false as a

Boolean and NaN as a Number.

Variables.

•	 The Javascript interpreter determines the type of a variable
as needed by the circumstance.

•	 Variables can be declared either by assigning it a value or
by explicitly declaring it:
var myVariable, pi=3.14;

// explicit declarations effect the scope of the variable.

Numeric Operators and Objects.

•	 Numeric operators in Javascript are similar to Java or C: +,
-, *, /, %, ++, --, etc.

•	 The Math object has many useful built-in methods and
properties for Number objects. For example, Math.sin(x),
Math.PI, Math.random, Math.abs, etc.

•	 The Number object has a useful collection of Number
properties. Number.MIN_VALUE,
Number.MAX_VALUE, Number.NaN, etc. It also has the
toString method. For example, x=10; y= x.toString();
z=x.toString(2); //binary representation.

Strings and Type Conversion.

•	 The + sign is used to concatenate strings.

first = “hello” .
second = first + “bye” // “hellobye” .

•	 The String object also has useful methods such as: charAt, indexOf, substring,
toLowerCase, toUpperCase, etc. A String object also always has a length
property.

•	 When the value of one type is used in a situation where another type is
required, Javascript tries to implicitly coerce the type into the required one.
Ex “August” + 1977 // “August1977”.

 1977 + “August” // “1977August”.
 7*“3” =21
 .

• One can also explicitly, do type conversion.
var str_value = String(value); // Might want to use toString.
var number = Number(aString); // Might want to use parseInt or parseFloat .

typeof, Assignments, and the Date

Object.

•	 The operators
typeof x //and .
typeof(x) /* returns either “boolean”, “string”, “number” if x is of primitive

type, it returns “object” if x is null or an object; and it returns “undefined”
if x is not defined*/.

•	 Assignments in Javascript are similar to C or Java:
a++; a+=2; a--; a-=2; a = b +57;

•	 The Date object is useful for getting information about the current date
and time:

var today = new Date();

•	 Date supports methods: toLocaleString, getDate, getMonth,
getDay,getFullYear, getTime, getHours, getMinutes, getSeconds,
getMilliseconds .

I/O.
•	 The default output target of a Javascript I/O is the browser window.
•	 Javascript models an XHTML document as a Document object.
•	 The window in which this document is displayed is a Window object.
•	 Window has two properties document and window. Here document refers to

the current Document object.
•	 Document has several useful methods for I/O. write, writeln.
•	 In addition to this method of I/O one can also create dialogs with the alert,

prompt, and confirm methods.
Ex:

name = prompt(“What is your name”, “John Smith”)

Control Statements.

•	 Javascript supports the relational operators: ==, !=, <, >,

<=, >=, ===, !== .
•	 The last two operators disallow conversion of either

operand. So “3” === 3 evaluate to false.
•	 Javascript also supports the operators &&, ||, !
•	 Selection statements in Javascript are like in C/Java: if(a

>b){} else{}.
•	 Javascript supports switch/case as in C/Java.
•	 Javascript supports while, for and do-while loops.

Objects.

•	 Objects can be created with an initial declaration like:

var my_object = new Object();
•	 This object would initially have no properties. To delete an object use:

delete my_object;
•	 An assignment like:

my_object.make= “V6” /* would then give a property make a value. */
//can access as.
p = my_object[“make”].
q = my_object.make.

•	 You can also nest objects this:
my_object.subObject = new Object();

• You can loop over properties using:
for(var prop in my_object){…}

Arrays.

• Arrays can be created with the syntax:

var myArr = new Array(1, 2, “hello”)
.
var myArr = new Array(100);

var myArr = [1,2,3];

//to access.

myArr[0]
.
//to determine length
.
myArr.length
 .

