Security

CS174
Chris Pollett
Nov. 5, 2008.

Outline

Captchas
Two topics related to captchas

XSS
CSRF

Security

Today we will be looking at various things vaguely
connected with security.

Often data from clients comes to your server via some
form. For example, the file upload processing we did last
day.

One annoyance you will have to deal with 1s robots that
find your web forms and upload garbage to your site,
spamming you.

One solution to this problem is to use Captcha’s.

We are first going to talk about Captchas then give two
uses for the code we create.

Captcha

CAPTCHA stands for Completely Automated Public
Turing Test to tell Computers and Humans Apart.

These were developed at Carnegie Mellon around 2000 by
Luis von Ahn, Manuel Blum, Nicholas Hopper, and John
Langford.

The basic 1dea 1s that you put on your form an image of a
distorted string.

You hope the robot cannot decipher the string from the
image so won’t be able to fill out that portion of the form
correctly:

Please type the following text:

Making a Stmple Captcha in PHP

e The previous CAPTCHA might be created with the code:

<p>Please type in the following text:
<?php
$md5 = md5(microtime() * mktime());
$captcha_string = substr($md5,0,5);
$captcha_img = imagecreatetruecolor(70, 40);
$color = imagecolorallocate($captcha_img, 255, 0, 255);

$line = imagecolorallocate($captcha_img,233,239,239);
imagestring($captcha_img, 5, 10, 10, $captcha_string, $color);
imageline($captcha_img,0,0,39,29 $line);
imageline($captcha_img,40,0,64,29 $line);
imageline($captcha_img,0,40,64,0,$line); imagejpeg($captcha_img,
"images/captcha.jpg",100); imagedestroy($captcha_img);

//'100 is the jpeg quality
$_SESSION]['key'] = $captcha_string; 7>

<input type="text" name="key" size="5" /></p>

* When the form this is on is submitted the form value for key can be compared with the
value for key in $_SESSION.

* The above writes to a file; which is a little bit flaky. You can also use PHP to write to a
stream with lines like:

header("Content-type: image/jpeg");
imagejpeg($captcha);

Thumbnails

e The code for creating a captcha uses the image
libraries which can also be useful for creating such

things as thumbnails:

function createThumb($tname, $base, $filename) {
$image = imagecreatefromjpeg($base.$filename);
//or could have imagecreatefromgif, etc

$size = getimagesize($base.$filename);

$thumb = imagecreatetruecolor(50, 50);
imagecopyresampled($thumb, $image, 0,0, 0,0, 50, 50,
$size[0],$size[1]);

imagejpeg($thumb, $base.$tname," .jpg", 100);
imagedestroy($image);

imagedestroy($thumb);
h

Sending a Mail Message

It is often useful to collect a person’s e-mail address with a form.

By mailing, a person a special code that allows them to complete a registration
process, one can verify that one has a real e-mail address of a real person.

The simplest way to do this is to use the mail() command:
$message = “Here is a mail message”;
mail(“Someone @somewhere.com”,
“Here 1s the title™,
$message,
"From: cpollett@somewhereelse.com™);

This could be combined with a captcha to try to reduce the risk of your
site spamming other sites.

Attacking Web-sites

* We are next going to look at different ways
a web-site might be attacked and we are

going to try to find ways to mitigate these
attacks.

e These attacks are: XSS, CSRF.

XSS

e XSS stands for Cross-Site Scripting. Notice the
initials are actually CSS but that already means
cascading stylesheets.

e There are several variants of XSS, some are as
simple as embedding bad links into emails.

e Usually, though this vulnerability 1s caused when:
— a website has a form on it

— a malicious user or robot enters data into the form that
contains code (say HTML, Javascript)

— The form data is later displayed to other users, say
because it was a comment to a blog entry or a
guestbook entry, or a post to a newsgroup, etc.

— Merely viewing the post causes, cookies, etc of the
viewer to be sent to the malicious user who then uses
them for evil.

Mitigations

e Validate input from users! Treat all data posted
from forms as tainted and use things like
htmlentities to encode it before ever displaying it.

e Try to filter certain kinds of input (like scripts)

* If your site uses cookies make sure to tie the
cookie to the IP address so it can't be used by a
malicious third party.

CSRF

* CSRF stands for Cross-site Request Forgery.
Here 1s the 1dea of this attack

— Suppose a user logs into his online bank.

— The bank stores a cookie on his machine and only uses
that to check if he 1s logged in.

— The user browses to some other site (not the bank) with
malware 1n i1t and clicks on an image link that actually
contains a URL for the bank together with an action
like do a money transfer to a bad person.

— Since the user still has the banks cookie, the transaction
goes ahead without the user even knowing.

Mitigations

e Include user specific tokens in forms, so
form data won't be used to take actions on
databases unless that token 1s present.

e Check the referrer of any data sent to your
SErver.

e As a user make sure to log-off sites before
browsing elsewhere.

