
Security

CS174
Chris Pollett
Nov. 5, 2008.

Outline
• Captchas
• Two topics related to captchas
• XSS
• CSRF

Security

• Today we will be looking at various things vaguely
connected with security.

• Often data from clients comes to your server via some
form. For example, the file upload processing we did last
day.

• One annoyance you will have to deal with is robots that
find your web forms and upload garbage to your site,
spamming you.

• One solution to this problem is to use Captcha’s.
• We are first going to talk about Captchas then give two

uses for the code we create.

Captcha
• CAPTCHA stands for Completely Automated Public

Turing Test to tell Computers and Humans Apart.
• These were developed at Carnegie Mellon around 2000 by

Luis von Ahn, Manuel Blum, Nicholas Hopper, and John
Langford.

• The basic idea is that you put on your form an image of a
distorted string.

• You hope the robot cannot decipher the string from the
image so won’t be able to fill out that portion of the form
correctly:
Please type the following text:

Making a Simple Captcha in PHP
• The previous CAPTCHA might be created with the code:

<p>Please type in the following text:
<?php
 $md5 = md5(microtime() * mktime());
 $captcha_string = substr($md5,0,5);
 $captcha_img = imagecreatetruecolor(70, 40);
 $color = imagecolorallocate($captcha_img, 255, 0, 255);
 $line = imagecolorallocate($captcha_img,233,239,239);

imagestring($captcha_img, 5, 10, 10, $captcha_string, $color);
imageline($captcha_img,0,0,39,29,$line);
imageline($captcha_img,40,0,64,29,$line);
imageline($captcha_img,0,40,64,0,$line);imagejpeg($captcha_img,
"images/captcha.jpg",100);imagedestroy($captcha_img);

 // 100 is the jpeg quality
$_SESSION['key'] = $captcha_string;?>

<input type="text" name="key" size="5" /></p>

• When the form this is on is submitted the form value for key can be compared with the
value for key in $_SESSION.

• The above writes to a file; which is a little bit flaky. You can also use PHP to write to a
stream with lines like:

header("Content-type: image/jpeg");
imagejpeg($captcha);

Thumbnails
• The code for creating a captcha uses the image

libraries which can also be useful for creating such
things as thumbnails:

 function createThumb($tname, $base, $filename) {
 $image = imagecreatefromjpeg($base.$filename);

 //or could have imagecreatefromgif, etc
 $size = getimagesize($base.$filename);

$thumb = imagecreatetruecolor(50, 50);
imagecopyresampled($thumb, $image, 0,0, 0,0, 50, 50,
$size[0],$size[1]);

 imagejpeg($thumb, $base.$tname,".jpg", 100);
imagedestroy($image);

 imagedestroy($thumb);
 }

Sending a Mail Message
• It is often useful to collect a person’s e-mail address with a form.
• By mailing, a person a special code that allows them to complete a registration

process, one can verify that one has a real e-mail address of a real person.
• The simplest way to do this is to use the mail() command:

$message = “Here is a mail message”;
mail(“Someone@somewhere.com”,
 “Here is the title”,
 $message,
 "From: cpollett@somewhereelse.com”);

• This could be combined with a captcha to try to reduce the risk of your
site spamming other sites.

Attacking Web-sites

• We are next going to look at different ways
a web-site might be attacked and we are
going to try to find ways to mitigate these
attacks.

• These attacks are: XSS, CSRF.

XSS
• XSS stands for Cross-Site Scripting. Notice the

initials are actually CSS but that already means
cascading stylesheets.

• There are several variants of XSS, some are as
simple as embedding bad links into emails.

• Usually, though this vulnerability is caused when:
– a website has a form on it
– a malicious user or robot enters data into the form that

contains code (say HTML, Javascript)
– The form data is later displayed to other users, say

because it was a comment to a blog entry or a
guestbook entry, or a post to a newsgroup, etc.

– Merely viewing the post causes, cookies, etc of the
viewer to be sent to the malicious user who then uses
them for evil.

Mitigations

• Validate input from users! Treat all data posted
from forms as tainted and use things like
htmlentities to encode it before ever displaying it.

• Try to filter certain kinds of input (like scripts)
• If your site uses cookies make sure to tie the

cookie to the IP address so it can't be used by a
malicious third party.

CSRF
• CSRF stands for Cross-site Request Forgery.

Here is the idea of this attack
– Suppose a user logs into his online bank.
– The bank stores a cookie on his machine and only uses

that to check if he is logged in.
– The user browses to some other site (not the bank) with

malware in it and clicks on an image link that actually
contains a URL for the bank together with an action
like do a money transfer to a bad person.

– Since the user still has the banks cookie, the transaction
goes ahead without the user even knowing.

Mitigations

• Include user specific tokens in forms, so
form data won't be used to take actions on
databases unless that token is present.

• Check the referrer of any data sent to your
server.

• As a user make sure to log-off sites before
browsing elsewhere.

