
Webservices, Proxies, Rest, File

Uploads, Security.

CS174.

Chris Pollett.

Nov. 3, 2008.

Outline.

• Web Services .
• REST .
• JSON Example.
• More PHP.

Web Services.

•	 One important use of AJAX and PHP is to allow you to write web services.
•	 A web service is a programming interface which can be invoked over HTTP.
•	 The first attempts to standardize such services made use of things like WSDL,

SOAP, UDDI, etc. XML languages which tended to violate the KISS (keep it
simple stupid) principle.

•	 Some simpler web service interfaces have been written by major companies
using XML-RPC, JSON-RPC and REST.

•	 A XML-RPC document is a XML document which specifies a remote
procedure call, i.e., which function of which object to invoke on some server;
or it specifies the response of such a call. It later evolved into the more
complicated and still evolving SOAP (Simple Object Access protocal)

•	 JSON-RPC is like XML-RPC but uses JavaScript Object Notation -- basically,
a snippet of javascript code for an object.

REST.

•	 REST stands for Representational State Transfer. It is a technique for
writing web services developed by Roy Fielding in 2000.

•	 The idea is that an application state/method is viewed a resource. Each
resource has a URL. There is a well defined way to tack on to this
URL a query to invoke the function and return results. For example,
the Yahoo News Rest Service might be invoked with a line like:

http://search.yahooapis.com/NewsSearchService/V1/newsSearch?
appid=YahooDemo&query=madonna&results=2&language=en

JSON.

•	 Stands for Javascript Object Notation.
•	 It is commonly used for sending data when REST is used by Javascript can

immediately use the data.
•	 Primitive types in JSON are written as you expect:

12.3 -- an example Number

“hi there” -- an example String

true -- an example Boolean, other possibility false.

•	 Arrays are written in square brackets and comma separated:
[1, 4, 9] .

•	 Objects are written in braces and the name value pair are separated by a colon:
{“bob”: 29, “sally” : 35}

•	 JSON data can be assigned to an object with the syntax:
myObj = eval(“(” + data + “)”);

Proxies.

•	 Javascript function is only allowed to make requests back to the server from which it

came.
•	 So if you have a page http://somewhere.com/index.html

and you would like the Javascript on it to make use of the Yahoo! Rest API, how do you do it?
•	 You need to use a proxy on your server which passes the request onto Yahoo!
•	 One example of a PHP script to do such proxy-ing can be found at:
http://developer.yahoo.com/javascript/samples/proxy/php_proxy_simple.txt
•	 To use such a proxy, you need to have PHP running on your machine.
•	 You could rename the above file proxy.php set its permissions so that is executable and

put it somewhere you know under your document root.
•	 Then to access the Yahoo! service via the proxy you could do:
http://yourServer/proxy.php?yws_path=urlencodepath
•	 For example,
http://www.cs.sjsu.edu/faculty/pollett/test/proxy.php?yws_path=NewsSearchService%2FV1%2FnewsSea

rch%3Fappid%3DYahooDemo%26query%3Dmadonna%26results%3D2%26language%3Den

Example.

•	 Looked at proxy code from Yahoo!
•	 It is anexample of using the PHP curl_init,

curl_exec, curl_setopt, curl_close.

File Uploads.

•	 We are now going to look at a couple of useful things PHP

can do with regard to form processing.
•	 We have already seen that usually information sent from

forms is provided to our PHP scripts in the global
variables: $_REQUEST, $_POST, $_GET.

•	 These variables though are not used to handle file uploads.
Instead, the variable $_FILES is used.

Example.

•	 Consider the form:

<form enctype="multipart/form-data" method="post" action="test_upload1.php" >
<input type="hidden" name="MAX_FILE_SIZE" value="1000000" /><!-- The size is also

controlled by php.ini -->

<input type="file" name="docname" />

<input type="submit" value="Upload" />

</form>
•	 When test_upload1.php is run, the global variable $_FILES[“docname”] will

be set to something like:
Array(

[name] => mystyles.css

[type] => text/css

[tmp_name] => /private/var/folders/k-/k-GHnyslGhyOhMqq80ZXgk+++TI/-Tmp-/phpcSLlhk

[error] => 0 [size] => 157)

•	 Hence, we can then do a command like:
move_uploaded_file($_FILES["docname"]["tmp_name"], "$where_we_want");
to get the file where we would like.

Security.

•	 We are now going to spend the rest of the lecture looking
at various things vaguely connected with security.

•	 Often data from clients comes to your server via some
form. For example, the file file upload processing we just
did.

•	 One annoyance you will have to deal with is robots that
find your web forms and upload garbage to your site,
spamming you.

•	 One solution to this problem is to use Captcha’s.

Captcha.

• CAPTCHA stands for Completely Automated Public

Turing Test to tell Computers and Humans Apart.

•	 These were developed at Carnegie Mellon around 2000 by
Luis von Ahn, Manuel Blum, Nicholas Hopper, and John
Langford.

•	 The basic idea is that you put on your form an image of a
distorted string.

•	 You hope the robot cannot decipher the string from the
image so won’t be able to fill out that portion of the form
correctly:
Please type the following text:

Making a Simple Captcha in PHP.

• The previous CAPTCHA might be created with the code:

<p>Please type in the following text:
<?php

$md5 = md5(microtime() * mktime());

$captcha_string = substr($md5,0,5);

$captcha_img = imagecreatetruecolor(70, 40);

$color = imagecolorallocate($captcha_img, 255, 0, 255);
$line = imagecolorallocate($captcha_img,233,239,239);
imagestring($captcha_img, 5, 10, 10, $captcha_string, $color);
imageline($captcha_img,0,0,39,29,$line);
imageline($captcha_img,40,0,64,29,$line);
imageline($captcha_img,0,40,64,0,$line);

imagejpeg($captcha_img,
"images/captcha.jpg",100);
imagedestroy($captcha_img);

$_SESSION['key'] = md5($captcha_string);

?>

<input type="text" name="key" size="5" /></p>

Thumbnails.

•	 The code for creating a captcha uses the image

libraries which can also be useful for creating such
things as thumbnails:

function createThumb($image, $base, $filename)
 {
$image = imagecreatefromjpeg($base.$filename);
//or could have imagecreatefromgif, etc

	 $size = getimagesize($base.$filename);

$thumb = imagecreatetruecolor(50, 50);

imagecopyresampled($thumb, $image, 0,0, 0,0, 50, 50,
$size[0],$size[1]);

imagejpeg($thumb, $base."thumb.jpg", 100);

imagedestroy($image);

 imagedestroy($thumb);
}

Sending a Mail Message.

•	 It is often useful to collect a person’s e-mail address with a form.
•	 By mailing, a person a special code that allows them to complete a registration

process, one can verify that one has a real e-mail address of a real person.
•	 The simplest way to do this is to use the mail() command:

$message = “Here is a mail message”;
mail(“Someone@somewhere.com”,

 “Here is the title”,

$message,

"From: cpollett@somewhereelse.com”);

•	 This could be combined with a captcha to try to reduce the risk of your
site spamming other sites.

