
The Transport Layer

CS158a
Chris Pollett

Apr 30, 2007.

Outline

• Transport Layer Terminology
• Transport Protocols

– Addressing
– Connection Establishment
– Connection Release

Transport Layer Terminology
• Last day we gave a socket programming example in JAVA (book has

Berkeley sockets in C example) and send the primitives the transport
layer provides to the application layer are: LISTEN, CONNECT,
SEND, RECEIVE, DISCONNECT.

• We will call the messages sent from transport entity to transport
entities (Transport Protocol Data Units) TPDUs.

• So in our set-up:
– A server might LISTEN at a port
– Then a client CONNECT’s by sending a CONNECTION REQUEST

TPDU.
– The server unblocks and sends a CONNECTION ACCEPTED TPDU.
– At which point the two sides can SEND and RECEIVE TPDUs.
– There are two ways to disconnect: symmetric and assymetric. In

asymmetric either entity sends a DISCONNECT TPDU and both parties
disconnect. In a symmetric disconnect if one party says DISCONNECT, it
means they will no longer send but might still receive.

Transport Protocols
• The transport layer and the data link layer have many

similarities: both deal with error control, sequencing, and
flow control.

• There are some important differences however:
– In the transport layer specific addressing of destinations is

required.
– The process of establishing a connection is more complicated in

the transport layer.
– Further, in the transport layer, packets may be delayed for a long

time but rather than be permanently lost show up instead at an
inopportune moment.

– Flow control has to be more sophisticated in the transport layer as
one might have many more connections.

Addressing
• The method normally used to determine where to send messages is to

define transport addresses to which processes can listen for requests.
• These are called ports (on internet), AAL-SAPs (for ATM), or

generically TSAPs (Transport Service Access Points).
• We will call network layer address NSAPs.
• The reason one needs separate TSAPs and NSAPs, is that typically an

NSAP only specifies a machine, not a process (aka server on that
machine).

More on Addressing

• For some well known services (Web Server) it might be useful to have
a fixed service listening on that port all the time.

• Typically, this is not done for most services. Instead, one has process
server (for example inetd) that acts as a proxy for less heavily used
servers. It listens to a set of ports.

• When a CONNECT is done, if no other server is waiting for the
request, the request goes to the process serer which spawns the
requested server, and gives it the desired connection.

• There are some situations where this is impractical (fileservers), in
which case a name server/directory server approach (DNS) is used
instead.

• Here the connector send a request to the name server and the name
server responds with the TSAP of the desired server.

Connection Establishment
• In its simplest form this is done by sending a CONNECTION REQUEST TPDU

which is answered with a CONNECTION ACCEPTED.
• However, problems can occur if the packets get delayed and so are re-sent. I.e., one

gets duplicated packet issues.
• To solve this problem packets are given a fixed lifetime according to one of the

following techniques:
1. Restricted subnet design (any technique that prevents looping)
2. Putting a hop counter in each packet
3. Timestamping each packet

• Using one of the above schemes, let T be the length time for a packet and all of its
acknowledgements to become dead.

• Tomlinson (1975) and Sunshine and Dalah (1978) give algorithms for establishing
connections safely under the assumption that packets have a fixed lifetime. The setp-
up is described on the next slide.

More on Connection
Establishment

• Each host has a time-of-day clock, which is assumed to take the form of a
binary counter which is incremented at uniform intervals.

• There are more bits in this counter than the number of bits in sequence
numbers, and this clock never goes down.

• When a connection is established the low order k bits of the counter are used
as the initial sequence number.

• The space of numbers is assumed large enough that by the time they wrap, old
TPDUs with the same number are long since gone.

• Once the transport entities have agreed on the initial sequence number, and
sliding window protocol can be used for flow control.

• If a host crashes one could wait T before letting the host send again.
• As T might be large, this is not usually done. Instead, we prevent the last

sequence numbers from before the crash being used as initial sequence
numbers for a time T. (Within T called forbidden region). We also require at
most one TPDU per time tick to prevent a host from sending to many TPDUs
and “catching up” with pre-crash TPDUs. One also has to check if one send to
slow.

• What is left is to describe how to agree on the initial sequence number:

Three-Way Handshake
• Host 1 chooses a sequence number, sends a

CONNECTION REQUEST TPDU to Host 2
• Host 2 replies with an ACK TPDU and its own initial

sequence number.
• Finally, host 1 acknowledges host2’s choice of initial

sequence number in the first TPDU it sends.
• How this solves the problems of stray TPDUs in different

situations is illustrated below:

Experiment in Class

• I showed how to telnet into a webserver on
port 80 and download a web-page.

