The Transport Layer

CS158a
Chris Pollett
Apr 30, 2007.

Outline

e Transport Layer Terminology

e Transport Protocols

— Addressing
— Connection Establishment

— Connection Release

Transport Layer Terminology

* Last day we gave a socket programming example in JAVA (book has
Berkeley sockets in C example) and send the primitives the transport
layer provides to the application layer are: LISTEN, CONNECT,
SEND, RECEIVE, DISCONNECT.

 We will call the messages sent from transport entity to transport
entities (Transport Protocol Data Units) TPDUs.
* Soin our set-up:
— A server might LISTEN at a port

— Then a client CONNECT’s by sending a CONNECTION REQUEST
TPDU.

— The server unblocks and sends a CONNECTION ACCEPTED TPDU.
— At which point the two sides can SEND and RECEIVE TPDU .

— There are two ways to disconnect: symmetric and assymetric. In
asymmetric either entity sends a DISCONNECT TPDU and both parties
disconnect. In a symmetric disconnect if one party says DISCONNECT, it
means they will no longer send but might still receive.

Transport Protocols

The transport layer and the data link layer have many
similarities: both deal with error control, sequencing, and
flow control.

There are some important differences however:

— In the transport layer specific addressing of destinations is
required.

— The process of establishing a connection 1s more complicated in
the transport layer.

— Further, in the transport layer, packets may be delayed for a long
time but rather than be permanently lost show up instead at an
inopportune moment.

— Flow control has to be more sophisticated in the transport layer as
one might have many more connections.

Addressing

The method normally used to determine where to send messages 1is to
define transport addresses to which processes can listen for requests.

These are called ports (on internet), AAL-SAPs (for ATM), or
generically TSAPs (Transport Service Access Points).

We will call network layer address NSAPs.

The reason one needs separate TSAPs and NSAPs, is that typically an
NSAP only specifies a machine, not a process (aka server on that
machine).

Host 1 Host 2 Host 1 Host 2

Time-
of-day
server,

ervi
User Process User Process
Server Server

Layer

TSAP

More on Addressing

For some well known services (Web Server) it might be useful to have
a fixed service listening on that port all the time.

Typically, this is not done for most services. Instead, one has process
server (for example inetd) that acts as a proxy for less heavily used
servers. It listens to a set of ports.

When a CONNECT is done, if no other server is waiting for the
request, the request goes to the process serer which spawns the
requested server, and gives it the desired connection.

There are some situations where this 1s impractical (fileservers), in
which case a name server/directory server approach (DNS) is used
instead.

Here the connector send a request to the name server and the name
server responds with the TSAP of the desired server.

Connection Establishment

In its simplest form this is done by sending a CONNECTION REQUEST TPDU
which is answered with a CONNECTION ACCEPTED.

However, problems can occur if the packets get delayed and so are re-sent. L.e., one
gets duplicated packet issues.

To solve this problem packets are given a fixed lifetime according to one of the
following techniques:

1. Restricted subnet design (any technique that prevents looping)
2. Putting a hop counter in each packet

3. Timestamping each packet

Using one of the above schemes, let T be the length time for a packet and all of its
acknowledgements to become dead.

Tomlinson (1975) and Sunshine and Dalah (1978) give algorithms for establishing
connections safely under the assumption that packets have a fixed lifetime. The setp-
up is described on the next slide.

More on Connection
Establishment

Each host has a time-of-day clock, which is assumed to take the form of a
binary counter which is incremented at uniform intervals.

There are more bits in this counter than the number of bits in sequence
numbers, and this clock never goes down.

When a connection is established the low order k bits of the counter are used
as the initial sequence number.

The space of numbers is assumed large enough that by the time they wrap, old
TPDUs with the same number are long since gone.

Once the transport entities have agreed on the initial sequence number, and
sliding window protocol can be used for flow control.

If a host crashes one could wait T before letting the host send again.

As T might be large, this is not usually done. Instead, we prevent the last
sequence numbers from before the crash being used as initial sequence
numbers for a time T. (Within T called forbidden region). We also require at
most one TPDU per time tick to prevent a host from sending to many TPDUs
and “catching up” with pre-crash TPDUs. One also has to check if one send to
slow.

What is left is to describe how to agree on the initial sequence number:

Three-Way Handshake

Host 1 chooses a sequence number, sends a
CONNECTION REQUEST TPDU to Host 2

Host 2 replies with an ACK TPDU and its own initial
sequence number.

Finally, host 1 acknowledges host2’s choice of 1nitial
sequence number in the first TPDU it sends.

How this solves the problems of stray TPDUs in different
situations 1is illustrated below:

Host 1 Host 2 Host 1 Host 2 Host 1 Host 2
Old duplicate

CR
CR (s %‘
%9y CR (seq < %) Old duplicate 4
\ N
pot

) >

P\O“ 2N P\O\L =% o \560\ ~
\59Q4\J‘ \seqﬁ\l' s DAT
P\G\/\ p\C\k A (se
40K=g=&

Old duplicate
D,

ATA
(s REy, R,
W % Slecr ok
=y 7]

(@) (b)

- Time

©

Experiment 1n Class

e | showed how to telnet into a webserver on
port 80 and download a web-page.

