End Of Error Correction, Flow
Control

CS158a
Chris Pollett
Feb 28, 2007.

Outline

* Finish up Error Detecting and Correcting
Codes

e Sliding Window Protocols for Flow Control

Cyclic Redundancy Check Codes

e These are also known as polynomial codes.

* A k-bit frame is viewed as specifying the coefficients of a degree k-1
polynomials.

e For example 101 code 1x%+1x°.

* Polynomials can be added mod 2, they can also be multiplied and
divided.

* Ina CRC code, both sender can receiver agree on on a generator
polynomial G(x) which has both its high and low order coefficient 1.

* We assume the message m has length > deg(G)=r. Let M(x) be the
polynomial of the message.

 To compute a checksum for a message we (1) Compute x'M(x), (the
bit sequence of this polynomial is that of M(x) shifted over r bits). (2)
Divide x™M(x) by G(x) to get a remainder R(x). (3) Send the
coefficients of T(x) = x'M(x)-R(x).

More on CRC codes.

Notice T(x) is divisible by G(x).

Suppose T(x)+E(x) arrives.

Then (T(x) +E(x))/G(x) = E(X)/G(x).

The only way an error is undetected is if this value is O.

If there was a single bit error then E(x)=x' for some i which can’t be divisible by G(x).
So any single bit error will be detected.

If there are two errors then E(x)= x!+ xJ where i>j. So E(x)= xi(x'J +1). So this error will
be detected provided that G(x) does not divide x*+1 for any k up to i-j.

There are some low degree polynomials that will give this protection to very long
frames. For instance, x>+ x!%+1 does not divide x* +1 for any k below 32768.

If E(X) contains an odd number of terms (hence errors), then it cannot have x+1 as a
factor mod 2, so if x+1 is a factor of G(x) we can catch these errors.

To see this suppose E(x)=(x+1)Q(x) had an odd number of terms. Then E(1)=(1+1)Q(1)
=0 mod 2. On the other hand substituting 1 for an odd number of terms should give 1
mod 2.

CRC codes with r check bits will detect all burst errors of length < r. Such an error
would look like xi(xk +x51 + .. +x9). If G(x) has a x° term, it will not have an x' factor,
so if the degree of the parenthesized expression if less than G(x), the remainder won’t be
0.

IEEE 802 uses the polynomial

X324 x264 x234 x224 x16 4 x12 4 x 1y x104 x84 x74 x5+ x4+ x2+ x! +1

Data Link Layer Protocols

 We start with some assumptions:

We will view the physical layer, data link layer, and network layer
as each running in its own process on a machine.

Initially we will assume two machine A and B and that A wants to
send on a connection-oriented channel a message to B.

We assume neither machine ever crashes.

We will assume the data link layer does not look at the data inside
packets and the network layer 1s always ready to give a packet to A
data link layer.

Elementary Data Link Protocols

e To start we will consider the following three
protocols:

e An Unrestricted Simplex Protocol
* A Simplex Stop-and-Wait Protocol
* A Simplex Protocol for a Noisy Channel

Protocol Definitions

#define MAX_PKT 1024 /* determines packet size in bytes */

typedef enum {false, true} boolean; /* boolean type */

typedef unsigned int seq_nr; /* sequence or ack numbers */

typedef struct {unsigned char data[]MAX_PKT];} packet;/* packet definition */

typedef enum {data, ack, nak} frame_kind; /* frame_kind definition */

typedef struct { /* frames are transported in this layer */
frame_kind kind:; /* what kind of a frame is it? */
seq_nr seq; /* sequence number */
seq_nr ack; /* acknowledgement number */
packet info; /* the network layer packet */

} frame;

Continued =2

Some definitions needed 1n the protocols to follow.
These are located in the file protocol.h.

PI. otoc 01 void from_physical_layer(frame #r);
/* Pass the frame to the physical layer for transmission. */
Definitions void to_physical_layer(frame #s);

[+ Start the clock running and enable the timeout event. */

(Ctd) void start_timer(seqg_nr k);

/% Stop the clock and disable the timeout event. #/
void stop_timer(seq_nr k);

[+ Start an auxiliary timer and enable the ack_timeoutevent. #/
void start_ack_timer(void);

/% Stop the auxiliary timer and disable the ack_timeoutevent. *
void stop_ack_timer(void):

Some definitions /* Allow the network layer to cause a network_layer_ready evel
needed in the void enable_network_layer{void);
protocols to follow. /* Forbid the network layer from causing a network_layer_read
These are located in void disable_network_layer(void);
the file protocol.h. [+ Macro inc is expanded in-line: Increment k circularly. */

#define inc(k) if (k < MAX_SEQ) k=k + 1; else k=0

Some Comments

In our struct frame the kind field is needed because some frames such
as acknowledgements don’t have any data in their info field to be
forwarded to the network layer.

We assume the channel is unreliable and sometimes loses entire
frames.

To recover from this, the data link layer must start an internal clock
whenever it sends a frame.

If no reply 1s received within a certain period, the clock times out and
the data link layer receives an interrupt signal.

Our wait_for_event function will in this case return event=timeout.
start_timer and stop_timer are used to turn on and off this timer.

The functions start_ack_timer and stop_ack_timer control an auxiliary
timer used to generate acknowledgements in certain situation.

The functions enable_network_layer and disable_network_layer will
be used in some of our more advance protocols for flow control.

/* Protocol 1 (utopia) provides for data transmission in one direction only, from
sender to receiver. The communication channel is assumed to be error free,

Unre StriCted and the receiver is assumed to be able to process all the input infinitely quickly.

Consequently, the sender just sits in a loop pumping data out onto the line as
fast as it can. */

S 1mpleX typedef enum {frame arrival} event type;

#include "protocol.h"

PrOtO C Ol void sender1(void)

{

frame s; /* buffer for an outbound frame */
packet buffer; /* buffer for an outbound packet */

while (true) {
from_network_layer(&buffer); /* go get something to send */

s.info = buffer; /* copy it into s for transmission */
to_physical_layer(&s); /* send it on its way */
} / * Tomorrow, and tomorrow, and tomorrow,

Creeps in this petty pace from day to day
To the last syllable of recorded time
- Macbeth, V, v */
}

void receiveri(void)
{
frame r;
event_type event; /* filled in by wait, but not used here */

while (true) {
wait_for_event(&event); /* only possibility is frame_arrival */
from_physical_layer(&r); /* go get the inbound frame */
to_network_layer(&r.info); /* pass the data to the network layer */
}
}

/* Protocol 2 (stop-and-wait) also provides for a one-directional flow of data from

[]
S 1mpleX sender to receiver. The communication channel is once again assumed to be error

free, as in protocol 1. However, this time, the receiver has only a finite buffer
capacity and a finite processing speed, so the protocol must explicitly prevent

S top and the sender from flooding the receiver with data faster than it can be handled. */

typedef enum {frame_arrival} event_type;

° #include "protocol.h"
Wait

void sender2(void)

{

Pr t C 1 frame s; /* buffer for an outbound frame */
O O O packet buffer; /* buffer for an outbound packet */

i event_type event; /* frame_arrival is the only possibility */
Although data is only
sent one way, both A while {true} { |
from_network_layer(&buffer); /* go get something to send */
and B send frames. s.info = buffer: /* copy it into s for transmission */
to_physical_layer(&s); /* bye bye little frame */
/ wait_for_event(&event); /* do not proceed until given the go ahead */
}
Here we wait for }
an void receiver2(void)
acknowledgment {
hich ; th frame r, s; /* buffers for frames */
which 18 sent here event_type event; /* frame_arrival is the only possibility */
while (true) {
walit_for_event(&event); /* only possibility is frame_arrival */
from_physical_layer(&r); /* go get the inbound frame */
to_network_layer(&r.info); /* pass the data to the network layer */
to_physical_layer(&s); /* send a dummy frame to awaken sender */

A Simplex Protocol for a Noisy

/* Protocol 3 (par) allows unidirectional data flow over an unreliable channel. */

In this example,
unlike simplex stop
and wait, frames
may be lost, so we
need to timeout 1f
we don’t get an
acknowledgement

This is called a positive
acknowledgement with
retransmission (PAR)
or Automatic Repeat
ReQuest (ARQ)
protocol because the
sender waits for a
positive ack before

advancing to next frame.

#define MAX_SEQ 1

/* must be 1 for protocol 3 */

typedef enum {frame_arrival, cksum_err, timeout} event_type;

#include "protocol.h"

void sender3{void)
{
seq_nr next_frame_to_send;
frame s;
packet buffer;
event_type event;

next frame to send =0;
from_network_layer(&buffer);
while (true) {
s.info = buffer;
s.seq = next_frame_to_send;
to_physical_layer(&s);
start_timer(s.seq);
wait_for_event(&event);
if (event == frame_arrival) {
from_physical_layer(&s);
if (s.ack == next_frame_to_send) {
stop_timer(s.ack);
from_network_layer(&buffer);
inc{next_frame_to_send);

/* seq number of next outgoing frame */
/* scratch variable */
/* buffer for an outbound packet */

/* initialize outbound sequence numbers */
/* fetch first packet */

/* construct a frame for transmission */
/* insert sequence number in frame */

/* send it on its way */

/* if answer takes too long, time out */

/* frame_arrival, cksum_err, timeout */

/* get the acknowledgement »/
/* turn the timer off */

/* get the next one to send */
/* invert next_frame_to_send */

Continued =2

A Simplex Protocol for a Noisy Channel

void receiver3(void)

{
seq_nr frame_expected;
frame r, s;
event_type event;

frame_expected = 0;
while (true) {
wait_for_event(&event);
if (event == frame_arrival) {
from_physical_layer(&r);
if (r.seq == frame expected) {
to_network_layer(&r.info);
inc(frame_expected);
}
s.ack = 1 — frame_expected;
to_physical_layer(&s);

/* possibilities: frame_arrival, cksum_err */
/* a valid frame has arrived. */

/* go get the newly arrived frame */

/* this is what we have been waiting for. */
/* pass the data to the network layer */

/* next time expect the other sequence nr */

/* tell which frame is being acked */
/* send acknowledgement */

A positive acknowledgement with retransmission protocol.

Sliding Window Protocols

We next want to consider protocols that allow for a full
duplex channel. 1.e., both A and B can send data.

We will consider:
e A One-Bit Sliding Window Protocol
e A Protocol Using Go Back N
* A Protocol Using Selective Repeat

In these protocols we both A and B may be sending data
frames and acknowledgement frames. We will use the kind
field of our frame struct to say which.

To further speed things up, when a data frame arrives rather
than immediately sending a control frame acknowledging it,
the receiver restrains itself and waits until its network layer
want to send a packet. Then it sends both this packet and the
acknowledgement in the same frame. (piggybacking).

If no frame controls from the receiver’s network layer up till
some timeout period then it just sends an acknowledgement.

Sliding Window Protocols (2)

Sender 7 0 7 0 7 0
6 1 6 1 6 1 6 1
5 2 5 2 5 2 5 2
4 3 4 3 4 3 4 3
Receiver
7 0 7 0 7 0 7 0
6 1 6 1 6 1 6 1
5 2 5 2 5 2 5 2
4 3 4 3 4 3 4 3

@) (b) (c) C)

e Ina sliding window protocol each outbound frame contains a sequence number from O to 2°-1.
e The sender maintains a set of sequence numbers it is permitted to resend.

» The receiver maintains a set of sequence numbers it is permitted to accept and pass on to it network
layer.

A sliding window of size 1, with a 3-bit sequence number.

(a) Initially, the sender has sent no frames so it is not allowed to resend any; the receiver is permitted to
accept a frame with seq number 0. The sender can send a frame with seq=0 for the first time.

(b) After the first frame has been sent, before it is received. Sender is allowed to resend this frame with
seq=0 in the event of a timeout.

(c) After the first frame has been received, it is passed to the receiver’s network layer. So that the
receiver does not give the same frame to its network layer twice the window is advanced.

(d) After the first acknowledgement has been received. Now sender is no longer allowed to resend
frame 0. So it will try to send frame 1 for the first can the whole process starts over.

A One-Bit Sliding Window
Protocol

*Here both the window size and number of bits for the sequence number

S istocol 4 (sliding window) is bidirectional.

#define MAX_SEQ 1 /* must be 1 for protocol 4 */
typedef enum {frame_arrival, cksum_err, timeout} event_type;
#include "protocol.h”

void protocol4 (void)

{

seq_nr next_frame_to_send;
seq_nr frame_expected;
framer, s;

packet buffer;

event_type event;

next_frame_to_send = 0O;
frame_expected = 0;
from_network_layer(&buffer);
s.info = buffer;

s.seq = next_frame_to_send;
s.ack = 1 — frame_expected;
to_physical_layer{&s);
start_timer(s.seq);

/* Qor1only */

/* Qor1only */

/* scratch variables */

/* current packet being sent */

/* next frame on the outbound stream */
/* frame expected next */

/* fetch a packet from the network layer */
/* prepare to send the initial frame */

/* insert sequence number into frame */
/* piggybacked ack */

/* transmit the frame */

/* start the timer running */

Continued =2

A One-Bit Sliding Window Protocol

while (true) {

wait_for_event(&event); /* frame_arrival, cksum_err, or timeout */
if (event == frame_arrival) { /* a frame has arrived undamaged. */
from_physical_layer(&r); /* go get it */
if (r.seq == frame_expected) { /* handle inbound frame stream. */
to_network_layer(&r.info); /* pass packet to network layer */
inc(frame_expected); /* invert seq number expected next */

}

if (r.ack == next_frame_to_send) { /* handle outbound frame stream. */

stop_timer(r.ack); /* turn the timer off */
from_network_layer(&buffer); /* fetch new pkt from network layer */
inc(next_frame_to_send); /* invert senderis sequence number */
}
}
s.info = buffer; /* construct outbound frame */
s.seq = next_frame_to_send; /* insert sequence number into it */
s.ack = 1 — frame_expected; /* seq number of last received frame */
to_physical_layer(&s); /* transmit a frame */

start_timer(s.seq); /* start the timer running */

A One-Bit Sliding Window Protocol

A sends (0, 1, AO)\ A sends (0, 1, AO) B sends (0, 1, BO)

B gets (0, 1 AO) B gets (0, 1, AO)*
/ B sends (0 (0, BO) 7 B sends (0, 0, BO)
A gets (0, 0, BO)*

A gets (0, 1, BO)*

A sends (1, 0, A1)-—-—-—-_~____.. B gets (1, 0, A1)* A sends (0, 0, AO)

B sends (1, 1, B1) B gets (0, 0, AO)
Agets (1, 1, By = 1 B sends (1, 0, B1)
A sends (0, 1, A2) A gets (0, 0, BO)

TT—a B gets (0, 1, A2)* A sends (1, 0, A1) . (A1)

B sends (0, 0, B2) gets (1, 0, A1)"
Agets (0, 0, B2y = B sends (1, 1, B1)
A sends (1, 0, AS)\ B gets (1, 0, A3)* A gets (1, 0, B1)*

Bsends(1,1,B3) | Asends(h 1 AD~—0 B gets (1, 1, A1)
B sends (0, 1, B2)

Time

(a) (b)
Two scenarios for protocol 4. (a) Normal case. (b)
Abnormal case. The notation 1s (seq, ack, packet

number). An asterisk indicates where a network layer
accepts a packet.

