The Medium Access Control Sublayer

CS158a

Chris Pollett
Mar 14, 2007.

Outline

- Static Channel Allocation
- Dynamic Channel Allocation
- Multiple Access Protocols

Static Channel Allocation

- The traditional way to allocate a single channel is to do Frequency Division Multiplexing.
- So if we have N users, the bandwidth is divided by N . Since each user has a private frequency there is no interference. If there is a small, constant number of users each with a heavy load of traffic, this is reasonably efficient.
- It is not so efficient if the number of users is highly variably and if the traffic is bursty.
- If at some point only a small number of the N users want to talk then most of the channel is wasted.

An example

- Let T be the mean time delay before get a channel of capacity C bps.
- Assume L frames arrive per second, each frame having a length draw from an exponential probability function with mean 1/M bits/Frame.
- It can be shown using queuing theory that if the frames arrive according to a Poisson process that:

$$
\mathrm{T}=1 /(\mathrm{MC}-\mathrm{L})
$$

- So if $\mathrm{C}=100 \mathrm{Mbps}$, the mean frame length, $1 / \mathrm{M}=10,000$ bits, and the arrival rate L is 5000 frames $/ \mathrm{sec}$, then $\mathrm{T}=200$ microseconds.
- Suppose now that the channel is divided into N independent channels, each with capacity C / N. The mean input rate of a channel is now L / N. In this setting the mean delay is: $\mathrm{T}_{\mathrm{FDM}}=1 /(\mathrm{M}(\mathrm{C} / \mathrm{N})-(\mathrm{L} / \mathrm{N}))=\mathrm{N} /(\mathrm{MC}-\mathrm{L})$ $=\mathrm{NT}$, or N times worse.
- So if the original channel of 100 Mbps was split into 10 channels of 10 Mbps each, the delay would be 2 msec .
- This same argument applies to TDM channels too.

Dynamic Channel Allocation

- We will now explore dynamic techniques to try to split the channel among multiple users while trying to achieve a smaller mean time delay.
- Dynamic Channel Allocation is often done in LANs and MANs.

Underlying Assumptions

In doing our allocations, we will assume:

1. A station model. We will assume we have N independent stations, each with a program or user that generates frames for transmission. The probability of a frame being generated in an interval Δt is $\lambda \Delta t$ where λ is a constant. Once a frame is generated a station becomes blocked and does nothing until the frame has been successfully transmitted.
2. Single Channel Assumption. We assume a single channel is available for all communication.
3. Collision Assumption. If two frames are transmitted simultaneously, the resulting signal is garbled and is called a collision. All stations detect collisions. A collided frame must be retransmitted. There are no error except collisions.
4. (a) Continuous Time. Frame transmission can begin at any time and there is no master clock.
(b) Slotted Time. Time is divided into discrete intervals called slots. Frame transmissions always begin at the start of a slot. A slot contains 0,1 , or more frames; ≥ 2 corresponding to a collision.
5. (a) Carrier Sense. Stations can tell if the channel is in use before trying to use it.
(b) No Carrier Sense. Stations cannot sense the channel before trying to use it.

Multiple Access Protocols

- The first multiple access protocol we will consider is called ALOHA.
- It was developed at the University of Hawaii in the 1970s.
- There are two variants: Pure Aloha which uses continuous time, and Slotted Aloha which uses slotted time.

Pure Aloha

- The basic idea of an ALOHA system is to let users transmit whenever they have data to send.
- There might be collisions; however, we assume by the feedback property of the broadcast channels, a sender can always determine if its frame was destroyed by listening to the channels. In the case of satellites there might be some delay in finding out (270 msec).
- If a collision occurs, the sender waits a random amount of time and resends the frame.
- Since this system allows multiple users to share the same channel in a way that might cause conflicts, it is called a contention system.

Analyzing Pure Aloha

- We would like to know what fraction of transmitted frames escape collisions?
- Notice after a collision a retransmitted frame might be involved in a second collision.
- Let N be the mean number of frames that arrive in any time interval of length the frame time (time to transmit 1 frame). So $0<\mathrm{N}<1$.
- Let k be the number of transmission attempts in any give frame time. Let G be the $\mathrm{E}[\mathrm{k}]$. So $\mathrm{G} \geq \mathrm{N}$.
- The throughput is then $\mathrm{S}=\mathrm{GP}_{0}$ where P_{0} is the probability that a frame does not suffer a collision

More analysis of Aloha.

- How long is a frame vulnerable?

Aloha (III)

- The probability that k frames are generated during a frame time is $\operatorname{Pr}[k]=\mathrm{G}^{\mathrm{k}} \mathrm{e}^{-\mathrm{G}} / \mathrm{k}$!
- In any interval two frames long the mean number of frames generated is 2 G .
- The probability that no other traffic $(\mathrm{k}=0)$ is generated over the entire vulnerable period is thus $\mathrm{P}_{0}=\mathrm{e}^{-2 \mathrm{G}}$.
- So as $\mathrm{S}=\mathrm{GP}_{0}$. $\mathrm{S}=\mathrm{Ge}^{-2 \mathrm{G}}$
- The maximum throughput occurs when $\mathrm{G}=1 / 2$ and $\mathrm{S}=1 /(2 \mathrm{e})$.

Aloha (IV)

