#### Optics and Wireless Media

CS158a Chris Pollett Feb 12, 2007.

## Outline

- More on Optical Fiber
- Wireless Transmission

# More on Optical Fiber

- Optical fiber is made from highly transparent glass, which in turn is made from essentially sand
- Attenuation of light through glass depends on the wavelength of light.
- It is calculated using the equation:

Attenuation in decibel/km = 10 log<sub>10</sub>[(transmitted power)/(received power)].



# Still More Fiber

- Three wavelengths of light are used for optical communication: .85, 1.3, and 1.55 microns.
- The latter two have better attenuation properties; the first one though is easier to produce electronics for (gallium arsenide).
- Each has a bandwidth between 25,000 and 30000 GHz.
- Light pulses sent down a fiber tend to spread out with distance in a process called **chromatic dispersion**.
- To prevent two pulses from overlapping one typically needs to separate them by a longer time gap, reducing the bandwidth.
- Currently, there is a lot of research into pulse based on the inverse of the hyperbolic cosine function (solitons) which do not suffer from this problem.

### Fiber Cables

• A typical fiber cable looks like:



- Fibers can be connected in three different ways: they can terminate in connectors (10 to 20% light loss), they can be spliced mechanically (10% light loss), or they can be melted together (best).
- Reflections can occur at the point of splice further interfering with the signals.

# Light Sources

• Two kinds of light sources are typically used: LEDs or semiconductor lasers.

| ltem                    | LED       | Semiconductor laser      |
|-------------------------|-----------|--------------------------|
| Data rate               | Low       | High                     |
| Fiber type              | Multimode | Multimode or single mode |
| Distance                | Short     | Long                     |
| Lifetime                | Long life | Short life               |
| Temperature sensitivity | Minor     | Substantial              |
| Cost                    | Low cost  | Expensive                |

# Fiber Optic Networks

- Fiber Optics can be used either for LANs or for long haul networks.
- In the LAN setting one often connects machines in a ring with point to point connections being given by the fiber.
- The interface at each computer come in two types: a passive interface consisting of two taps fused onto the main fiber (one for receiving, the other for sending), or an **active repeater** (incoming light converted to an electrical signal, then repeated as well as read).



# Wireless Transmission

- When electrons move, they create electromagnetic (EM) waves (photons) which can propagate through space.
- The number of oscillations per second of this wave is called its frequency, f, (measured in Hertz), the distance (in meters) for a wave to repeat itself is called its wavelength, λ.
- When an antenna of the appropriate size is attached to an appropriate electrical circuit, EM waves can be broadcasts efficiently. At the other end a receiver can pick them up.
- EM waves in a vacuum all travel at the same speed  $c = 3x10^8$ m/s.(Slower in other media).
- Frequency and wavelength are related by f  $\lambda$ =c
- So a 100MHz wave is about 3m long.

#### EM Spectrum



#### Information versus Frequency

- The amount of information that an EM wave can carry is related to its bandwidth.
- At low frequencies one can encode typically a few bits/Hz, at higher frequencies one can encode up to 8 bits/Hz.
- So a 750MHz cable can carry several gigabits/sec.
- Taking the derivative of  $f = c/\lambda$  gives  $df/d \lambda = -c/\lambda^2$ .
- Using finite differences one has  $|\Delta f| = c \Delta \lambda / \lambda^2$ . So if we use a wavelength band around  $\lambda$ ,  $\Delta \lambda$ , we can compute a corresponding frequency  $\Delta f$  and available data rate.
- For example, if  $\lambda = 1.3 \times 10^{-6}$  m and  $\Delta \lambda = .17 \times 10^{-6}$  m, we get a  $\Delta f$  of about 30THz. At 8bits/Hz, one has a theoretical rate of 240Tbps.
- Usually a narrow band around a wavelength is used to get the best power transmission.

#### Wide-band Techniques.

- Several wide-band techniques are in use:
  - Frequency hopping spread spectrum -- the transmitter hops from frequency to frequency hundreds of times per second, transmitting briefly on each frequency (use by 802.11 and Bluetooth). This technique minimizes multipath fading. (Invented by a Hollywood actress)
  - Direct sequence spread spectrum -- spreads the signal over a wide frequency band

#### Radio Transmission

- Radio waves are easy to generate, can travel long distance, and can penetrate buildings easily.
- For low frequency the radio waves pass through obstacles easily but the power falls off quickly.
- Higher frequency waves tend to travel in straight lines and bounce off objects.
- Due to the fact waves can travel long distance, it is easy for two transmitters to end up interfering with each other.
- HF and VHF waves that hit the ionosphere bounce off it greatly extending the range of transmission.

#### Satellites