
More on the Transport Layer

CS158a
Chris Pollett
May 2, 2007.

Outline

• Connection Release
• Flow Control and Buffering
• Multiplexing
• Crash Recovery
• UDP
• TCP

Connection Release
• Releasing a connections also has some wrinkles to it.
• For example, if asymmetric release is being done, data can be lost if it

was sent by the non-disconnect sender after the DISCONNECT was
sent but before it arrived.

• This is solved by using a symmetric set-up.
• Unfortunately, the symmetric setting can fall victim to the two-army

problem. If two blue armies attack separately will be destroyed, if
attack together will win. Armies must send messengers on foot to
communicate so some messages might be lost in the valley. How can
they synchronize their attack? For connections, neither side will
disconnect unless the other side does too.

More on Connection Release
• Turns out you can’t solve the the two-army problem with a

three-way handshake or similar protocol.
• Still although not perfect, three-way handshakes are

typically used: DISCONNECT REQUEST +start timer,
DR ACK +start time, ACK back and release connection.

• If the scheme completes then connection release occurs, if
no ACK then HOST 1 resends DR after timeout. If Host 2
times out before the ACK of the ACK come back and
before a second DR then it releases connection. It assumes
Host 1 got the DR ACK since Host 1 didn’t resend a DR.
Thus, Host 2 assumes that the ACK of the ACK was lost.

Flow Control and Buffering
• Like the data link flow control is done using a

sliding window protocol.
• Like the data link layer, frames are buffered at

both the sender and receiver.
• In the transport layer one can have multiple

connections, so the receiver has a choice to have
separate buffers for each connection or to have all
connections use the same buffer.

• Depending on whether all the TPDUs are the same
size one can also choose between having fixed
sized buffers or variable sized buffers, much as we
did with the leaky bucket algorithm in the network
layer.

Trade-off Between Source and
Destination Buffering

• For low bandwidth bursty traffic (for example, a terminal session) it is better to buffer at
the sender since the sender cannot be sure the receiver will be able to allocate a buffer at
the random time the sender sends.

• On the other hand, for high bandwidth smooth traffic like file transfer, it makes sense to
pre-allocate a window of buffers on the receiver before sending so that transfer can go as
fast as possible.

• Traffics patterns change dynamically at the transport level and so should buffer capacity.
• To handle this, it is useful at the transport layer for the sender and receiver to be able to

send to the other side buffer sizing requests.
• Initially, the sender requests a certain number of buffers based on its perceived needs.

The receiver then grants as many of these as it can afford. Then every time the sender
sends, it must decrement its allocation, finally stopping if it goes to 0. The receiver
separately piggybacks both ACKs as well as messages saying a buffer has been allocated
for the channel onto the reverse traffic.

• This scheme essentially means one has a variable sized window. The carrying capacity
of such a set-up depends on the subnets capacity.

• Belsnes (1975) proposed an algorithm which adjusts the window size to match the
network capacity. The sender’s window is periodically adjusted to be the current
estimate of c*r where c is the number of TPDUs/sec the network can handle and r is the
roundtrip time for the TPDU and its ACK.

Multiplexing

• There are two main types of multiplexing that occur in the
transport layer:
– Upward multiplexing -- this occurs when a TPDU arrives at the

network address of its final destination and must be handed off to a
particular process running there.

– Downward multiplexing -- this might occur if the subnet uses
virtual circuits and each has a fixed capacity. Several network
connections between source and destination might be opened then
and TPDUs might be split among these in a round-robin fashion.
For example, in ISDN one has two 64 kbps lines, using downward
multiplexing one can get an effective bandwith of 128kbps.

Crash Recovery
• If hosts and routers are subject to crashes then it is

important to have schemes for recovering.
• For datagram services transport entities expect lost

TPDUs so this is less of an issue that with
connection oriented services.

• For the latter, one needs to re-establish a virtual
circuit between the two end points and then use a
querying mechanism to determine which TPDUs
arrived correctly and which need to be re-sent.

UDP
• The internet has two main protocols in the transport layer: a

connectionless protocol (UDP) and a connection-oriented protocol
TCP).

• UDP stands for User Datagram Protocol has is described in RFC 768.
• UDP transmits segments consisting of an 8 byte header (see below)

followed by a payload.
• UDP does not do flow control, error correction or retransmission. (This

is up to the application that uses it).
• UDP is used by DNS, for remote procedure calls, where you have a

simple request followed by a reply which answer some calculation. So
if one doesn’t get an answer one just asks again.

• Another use is RTP (Real-time transport protocol) used by Real to
stream video over the web.

TCP
• TCP stands for transmission control protocol.
• It was designed to provide a reliable end-to-end byte

stream over an unreliable internetwork.
• It is defined in RFC 793 and later revise in RFC 1122,

RFC 1323.
• Each machine has a TCP entity which manages TCP

streams to the IP Layer.
• The TCP entity accepts user data streams from local

processes and breaks them up into pieces between 64K and
1460 bytes.

• To use TCP, the sender and receiver create end-points
called sockets as we already discussed.

• Each socket has a socket number consisting of a IP address
followed by a 16 bit number called a port. The port is the
TCP name for a TSAP.

• Some well known ports are given on the next slide:

Well-known TCP ports

Port Protocol Use
21 FTP File transfer
23 Telnet Remote login
25 SMTP E-mail
69 TFTP Trivial File Transfer Protocol
79 Finger Lookup info about a user
80 HTTP World Wide Web

110 POP-3 Remote e-mail access
119 NNTP USENET news

• Hel
• Dfjkfg fdkjfdg
• fkdshjghdffdjhgfjsdgf=fjhjdshffdhjs

