Problem #9.10

A popular children’s riddle is “Brothers and sisters have | none, but that man’s father is my father’s son.” Use the
rules of family domain (Section 8.3.2 on page 301) to show who that man is. You may apply any of the inference
methods described in this chapter. Why do you think that this riddle is difficult?

This problem in prenex normal form is:
VxVy3z (—r Brother(me, x) A— Sister(me,y) A Son(Father(z), Father(me)))

This is also in conjunctive normal form.

The existential quantifier can be removed by making z into a function of x and y through Skolemization. Hence:
VxVy (—, Brother(me, x) A— Sister(me,y) A Son (Father(f(x, y)), Father(me)))
Since there are only universal quantifiers remaining, these can be dropped resulting in:
— Brother(me, x) A— Sister(me,y) A Son (Father(f(x, y)), Father(me))
If a person a is the son of person b (i.e. Son(a, b) is true), then the relation can be rewritten:

Father(a) = b

This is still a binary expression since if a different constant other than a was inside the Father function, then the
relation may not be true. This substitution allows us to rewrite the riddle expression as:

— Brother(me, x) A— Sister(me,y) A (Father (Father(f(x, y))) = Father(me))

Note the requirement of the Father objects being Male is not included for brevity.

Any person only has one Father; what is more, | have no siblings who could also have the same father. Hence, the
outer Father functions can be dropped. This simplifies the equation to:

— Brother(me, x) A— Sister(me,y) A (Father(f(x, y)) = me)

Using the previously described relation that transformed the Son predicate to the Father function, this operation can
be reversed to change the expression to:

— Brother(me, x) A— Sister(me,y) A Son(f (x,y), me)
Therefore, f(x,y) (which was the original z) is simply the my son by substitution (i.e. {f (x,y)/son of me}).
This riddle is not terribly difficult. However, it obfuscates Father(z) = me by wrapping the me object in what

are complementary operations since me has no brothers. What is more, the use of any function symbols makes
inference inherently more difficult; this difficulty is solved when using Datalog Knowledge Bases.
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Problem #9.23

From “Horses are animals,” it follows that “The head of a horse is the head of an animal.” Demonstrate that this
inference is valid by carrying out the following steps:

a. Translate the premise and the conclusion into the language of first order logic. Use three predicates:
HeadOf (h, x) (meaning “h is the head of x”), Horse(x), and Animal(x).

The premise of this statement is “Horses are animals”. Rewritten in first-order logic with the defined predicates, this
statement is:

Vx(Horse(x) = Animal (x))
The conclusion of this statement is:
VyVhEIz(HeadOf(h, y) A Horse(y) = HeadOf (h,z) A Animal(z))
b. Negate the conclusion, and convert the premise and the negated conclusion into conjunctive normal form.
By definition:
Premise = Conclusion
To perform refutation, negate the conclusion and show that:
Premise A— Conclusion & {}
We will remove the quantifiers before converting to CNF by removing the quantifiers on the premise and conclusion
individually then removing the implication. This is possible since the premise and the conclusion do not rely on any
shared variables (i.e. the premise uses only x while the conclusion uses y, h, and z).
The premise is already in prenex normal form so the quantifiers can be dropped resulting in:
Horse(x) = Animal(x)
This can be made into a single clause through implication elimination.
Horse(x) v Animal(x)

In the conclusion, the existential quantifier can be replaced by making z a function of y and h (i.e. f(y, h)).
Hence, the conclusion becomes:

VyVh (HeadOf(h, y) A Horse(y) = HeadOf(h, f(, h)) A Animal(f(y, h)))

Again, since all variables are bounded by a universal quantifier, the universal quantifier(s) can be dropped making the
statement:

HeadOf (h,y) A Horse(y) = HeadOf (h, f (v, h)) A Animal(f (v, h))
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When implication elimination is applied to this equation, the result is:

— (HeadOf (h,y) A Horse(y)) v (HeadOf(h,f(y, h)) A Animal(f (y, h)))

To perform resolution refutation, the conclusion is negated. This results in:

HeadOf (h,y) A Horse(y) A (HeadOf(h, f(y,h) v Ammal(f (y, h)))

The conjunction of the premise and the negation of the conclusion is taken. It results in:

(Horse(x) v Animal(x)) A HeadOf (h,y) A Horse(y) A (HeadOf(h, f(Qy, h)) \% Ammal(f(y, h)))

This is in CNF format.
a
c. Use resolution to show that the conclusion follows from the premise.

Unification involves applying substitutions to the clauses in an expression in order to use resolution.

Step #1: Apply substitution {f (y, h)/y}. This simplifies the expression to:

(Horse(x) % Animal(x)) A HeadOf (h,y) A Horse(y) A (HeadOf (h,y) v Aumal(y))

Step #2: The second and fourth clauses can be resolved to achieve the new clause:

HeadOf (h,y), HeadOf (h,y) Vv Amimal(y)
Anmimal(y)

Step #3: Apply substitution {y/x}. This simplifies the expression to:

(Horse(x) \% Animal(x)) A HeadOf (h,x) A Horse(x) A (HeadOf(h, x)V Ammal(y)) A Anumal (x)
Step #4: The first and third clauses can be combined to achieve the new clause:

Horse(x) Vv Animal(x), Horse(x)
Animal(x)

Step #5: The clauses from step #2 and step #4 resolve to the empty set proving this statement by resolution.

Animal(x), Animal(x)

U
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Additional Problem #1

Draw the planning graph for the problem in figure 10.3 in the book. Solve the problem step-by-step using the
GraphPlan algorithm.

Figure 1 shows the initial and goal states of the Block World.

f LS -
—HitelState— —GoalState

Figure 1 — Block World Initial and Goal States
The literals and actions in this world are below.

Literals:

e Block(x) — A predicate for whether x is a block. Note: In the subsequent figures, the precondition conditions
from the Block literals to the actions are not shown for increased readability.

e On(x,y) — A predicate for whether block x is on top of y, where y can be another block or the Table.

e (lear(x) — A predicate for whether there is a clear space above block x where another block could be placed.

Actions:
e Move(x,y,z)— Moves block x from y to z.

e MoveToTable(x,y)— Moves block x from block y to the Table.

Additional Notes: The inequality preconditions (e.g. x # y) are not shown in the following figures also for increased
readability. What is more, Clear(Table) literals are not shown since according to the interpretation in the textbook,
this literal is always true.

Figure 2 is the planning graph for the ground actions for the Blocks world. From the initial state, there are three
possible, non-persistence actions. They are: moving block C to the table, moving block C on top of block B, and moving
block B on top of block C.
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Figure 2 — Block World Ground Actions (4,) and Mutex Relations

In line with the standard planning graph notation from class, preconditions are on the left side of the actions

(actions are shown inside rectangles) while the effects are on the right side of the actions. Mutex relations are shown as

red curved lines; additional mutex relations that are not shown in this figure include: Move(B, Table, C) < Clear(C)
and Move(C, A, B) <> Clear(B). In subsequent levels, the existing (i.e. preceding) mutex relations decrease

monotonically; actions increase monotonically, and literals increase monotonically. Therefore, any literals or actions
shown between S; and S;,; will also be present between S;,; and S;,,; however, some (but not all) mutex relations
have the potential to be dropped.
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For all actions after the ground action (i.e. A; where i > 0), Figure 3 shows the set of possible moves for an arbitrary
block z.! If block z is clear, then other than the persistence actions, the two movement actions that can be performed
on block z are:

1. Move(z, x,y) — This represents the two actions where block z is moved from x (where x can be either a block
other than z or the Table?) to block y.

2. MoveToTable(z,w) — Action where block z is moved from on top of another block w to the Table.

Note w in the action MoveToTable(z, w) could be the same as x from the action Move(z, x,y). However, a different
symbol (i.e. w) is used here to denote that x is either the Table or a block while w is exclusively a block. Depending on
whether x and w are the same blocks, then there may be additional mutex relations between On(z, w), =0On(z, w),
On(z,x), and =0n(z, x) which are not shown in Figure 3. In addition, as with Figure 2, the preconditions for the Block
literals are excluded for increased readability.

Sl' Ai SH]

—Clear(z) — Clear(z)

[%]

Clear(y) Clear(y)
ﬁClear(y))
Move(Z/,y)/ Clear(x)
—0n(z,x)
On(z,x) m On(z,x) )
Clear(z) Z>Q< Clear(z)
LI
—On(z,w)
MoveSgTgble(z,w)
Clear(w)
On(z,w) On(z,w)
Block(A) Block(4)
Block(B) Block(B)
Block(C) Block(C)

OO0 C

Figure 3 — Simplified Set of Generic Actions for a Block z in Action 4; where i > 0

! Block 4 in action A, is an exception to this statement because after A, block A cannot perform the MoveToTable action; this is

becauseregardtessof-whatAgwas; block A will always be on the table in state S;.

’ Note that if x is the Table, then the effect literal Clear(x) is not applicable as the Table is always clear by the problem definition.
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Figure 3 represents only the actions for block z. When the actions for blocks other than z are included, then there
will be additional mutex relations as not all actions and literals for this state become legal. For example, the action
Move(z, x,y) is mutually exclusive with the actions Move(x,y, z) and Move(y, z, x). Similarly, a persistence action for
Clear(x) would be mutually exclusive with the action Move(z, x, y).

Similar to the additional mutex relations on actions, there are additional mutex relations on literals that would
necessarily be added once the blocks other than z are added for level 4;. For example, On(z, w) is mutually exclusive
with On(w, z). What is more, On(z, w) is mutually exclusive with Clear(w) in the same way that On(w, z) is mutually
exclusive with Clear(z). These additional mutex relations are not captured in the single block actions shown in Figure 3.

The arbitrary move for block z would apply to all three blocks A4, B, and C for actions A;, A,, and A5 at which point
the graph would have leveled-off.

Solving the Problem Using Graph Plan
Figure 4 is pseudocode for the GraphPlan algorithm.

function GraphPlan(problem) returns a solution or failure
graph := INITIAL_PLANNING_GRAPH(problem)
goals := CONJUNCTS(problem.GOAL)
nogoods := {} # Empty hash table
fort=0to ~ do
if goals all non-mutex to S; of graph then
solution := EXTRACT-SOLUTION(graph, goals, NUMLEVELS(graph), nogoods)
if solution # failure then return solution

if graph and nogoods have both leveled off then return failure
graph := EXPAND_GRAPH(graph, problem)

Figure 4 — Pseudocode for the Graph Plan Algorithm
Step #1: Build the Initial Planning Graph
The ground actions in the planning graph are shown in Figure 2, and subsequent actions for blocks after A, are
shown in Figure 3. Figure 5 is a simplified planning graph with no mutex relations and the block preconditions excluded.
Excluding the persistence actions, it contains only the necessary moves to reach the goal.
Step #2: Express the Goal as a Conjunction of Literals
The goal can be expressed as:
Goal := On(C,Table) A On(B,C) A On(A, B)

Step #3: Check if the Goals are All Non-Mutex in S

In Sy, none of the goal literals are met. Moreover, the graph has not yet leveled off. As such, EXPAND GRAPH is
called to add the actions from A, update the effects (i.e. literals), and update the set of mutex relations.
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Figure 5 — Simplified Graph of the Necessary Actions to Reach the Goal for the Blocks World Problem
Step #4: Check if the Goals are All Non-Mutex in S
In S;, the goal literal, On(4, B), is not yet achievable since block 4 is not clear in the initial state so block A cannot
be moved until action A; at the earliest. Moreover, the graph has not yet leveled off. As such, EXPAND GRAPH is
called to add the actions from A, update the effects (i.e. literals), and update the set of mutex relations.

Step #5: Check if the Goals are All Non-Mutex in S,

In S5, the only way to achieve On(4, B) is to perform that action Move(A4, Table, B). Similarly, in S, there are two
ways to achieve the state On(B, C).

1. Move block B on top of block Cin Ay. Next, perform the persistence action in A;. (Note this is not shown in
Figure 5). This persistence action is mutually exclusive with Move (A, Table, B) since the requisite precondition
of the move, Clear(A), would be false creating a mutually exclusive relation.

2. Perform the move Move(B,Table, C) or Move(A, Table, B) in A;. These actions are mutually exclusive under
the Interference cause since Move (B, Table, C) has the precondition Clear(B) while Move(A, Table, B) has

the negation (i.e. =Clear(B)) as its effect.

Hence, all goals are not mutex in S, due to inconsistent support. As such, EXPAND GRAPH is called to add the actions
from A,, update the effects (i.e. literals), and update the set of mutex relations.

Step #6: Check if the Goals are All Non-Mutex in S3
In §3, all goal literals are non-mutex. Hence, Extract Solution can be called for the first time.

Step #7: Run Extract Solution
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Extract-Solution can be in one of two forms:

1. Constraint Satisfaction Problem (CSP) — The variables are the actions at each level. All the variables have the
domain {Included, Excluded}, which represents whether that action is included or excluded from the plan.
The constraints are the mutex relations.

2. Backward Search Problem — The initial state is the final level of the planning graph (in this case S3). The goal is
to cover the set of goal literals (e.g. On(C, Table) A On(B,C) A On(A4, B)). Actions in the search problem are a
set of non-mutex actions that for each level in the graph covers one or more of the literals.

We will consider approach #1. The solution of the CSP would be to set the variables {MoveToTable(C, A),
Move(B,Table,C), Move(A,Table, B)} would be Included for actions A, A1, and A, respectively; there would also
be a series of persistence actions (e.g. blocks A and B performed persistence actions in Ay, blocks A and C performed
persistence actions in A;, blocks B and C performed persistence actions in A,). All other actions would be Excluded.
This solution would solve the problem without violating any mutex relations. This would then be returned by the
algorithm.
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Additional Problem #2

Briefly explain how PDDL solves the frame problem. Given some disadvantages of formulating problems in PDDL.

As with the definition of a generic search problem, the four core items that the Planning Domain Definition
Language (PDDL) utilizes are:

Initial State

Actions available in each state
Result of applying an action
Goal Test

PwnNE

A state is a conjunction of fluents (i.e. facts that my change from situation to situation). The fluents are ground in
that they do not rely on variables.

The result of any action must explicitly define those aspects of the state that changed and those which stayed the
same. In classical planning, it is normally the case that more aspects of a state remain the same after an action than
actually change. The frame problem encapsulates the issue of trying to enumerate all of the potentially numerous
aspects of the state that remained the same after an action was performed. To address this problem, PDDL only
enumerates those aspects of the state that change as a result of an action. Any unmentioned aspect of the state is by
definition unchanged by the action. This in effect is the minimum information required to fully describe the result of an
action and reduces the complexity of defining any action by entirely eliminating the need to specifically enumerate the
usually more numerous aspects of the state that did not change.

While PDDL addresses the frame problem well, it does have limitations. First, PDDL fluents do not explicitly include
time. While preconditions refer to a generic time t and effects to a time t + 1, this discretized representation of time
will not be sufficient for all types of problems. Scheduling problems require information about time including how long
an action takes and when it occurs. For example, with the “Air Cargo Transport” problem, actions can be ordered, but
the PDDL representation has no sense of things like departure and arrival times of the aircraft. A temporal language
would be better suited to this role.

Second, PDDL does not effectively capture the cost associated with an action. Instead, it generalizes action costs to
a discretized “level cost”, which is the distance in levels from the initial state to the level in the planning graph where the
action appears. This oversimplification will be insufficient if the planning agent behaves more as a utility based agent
than a goal based agent. For example, consider a variant of the air cargo problem where cargo must be moved from JFK
to SFO with the minimum possible cost. If the only routes from JFK to SFO were through London or Kansas City, PDDL
would not capture that the route through Kansas City would cost significantly less than the London itinerary.

Two additional general limitations of all planning languages, including PDDL, are the qualification and ramification
problems. The qualification problem highlights that there are some aspects of the environment that may cause an
action to fail. What is more, these implicit and necessary preconditions for the success of an action can be innumerable
and unknowable for practical purposes. For example, the Fly action in the “Air Cargo Transport” problem requires
sufficient fuel in the tank, a competent pilot, good weather, no sabotage, etc.; otherwise the Fly action will fail.
However, the textbook’s PDDL description of this action does not capture these dependencies. Similarly, the
ramification problem states that when performing an action, there are many secondary effects that are not always
captured. For example, when the Fly action is performed, some of the airline’s gasoline reserve is consumed.
Moreover, after a Fly action, in addition to the movement of a package, some airline staff as well as possibly customers
are moved to a new location. However, these tertiary effects can not all be practically captured by PDDL or any other
planning language.
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