
1?-[myprogram.P]
loads program in

To launch prolog at dos promopt

> xsb
1?- halt //exits prolog
ctrl-d // exits prolog

Simple prolog program example

 /* this is a prolog comment */
 /* prolog has 2 o-ary predicates true/fail */
 bird(ostrich). /* all lower case letters means a constant */
 bird(penguin). /* variables begin with uppercase letters */
 bird(seagull).
 bird(eagle).
 flies(W) :- bird(W), /* flies W if W is a bird, but not an ostrich or penguin
 W \= ostrich /* /= is not equals in prolog */
 W \= penguin
 loves(jane, X) :- flies(X). /* jane loves things that fly */
 loves(penguin, jane). /* penguin loves jane */
 loves(aadvark, jane). /* aadvark loves jane */
 /* r1 :- c1, … cn /* this is a rule */
 /* f1 :- … /* this is a fact/clause */
 /* bird, loves, flies are called predicates
 /* number of slots predicate has called arity. Often when describing a predicate add arity after

 name
/* bird /1 means bird has parity 1 or bird(x)
/* bird /2 means bird has parity 2 or bird(x,y)
/* r1 :- c1, c…, cn the r1 is the head of the rule, c1, c2, c3, … is the tail of the rule

 1?- bird(seagull).
 yes.
 1?- bird(duck).
 no.
 1?- bird(X), loves(X, jane).
 X = penguin /* if you put a semicolon at the end of this line and hit return, compiler looks for more

solutions */
 no.
 1?- loves(X, Y).
 X = jane
 Y = seagull;
 X = jane
 Y = eagle;
 X = penguin
 Y = jane;
 X = aadvark
 Y = jane;
 no.

Lists in prolog

Looks different than scheme, but roughly same idea

[] = empty list
[a, b, c] = commas between items like C
[dogs, cats, marbles, mix]
[root, [11, 12], [13]] = list of lists

code to append two lists

append([], L, L). empty list appended with list L gives just list L
append([X | L1], L2, [X | L3]) :- append(L1, L2, L3)

X denotes first element of list, | denotes rest of list

1?- append([a, b], [c], Z).
[a, b, c]

/* this tries to match the 2nd rule, X = a, L1 = [b], L2 = [c]
 tries to compute append([b], [c], L3)

 matches 2nd rule
 X = b
 L1 = []
 L2 = [c]

 tries to compute append([], [c], L3)
 matches 1st rule
 L = [c]

	Simple prolog program example
	Lists in prolog

