Topics contained herein:
Strategies for 2 player games

Strategies:

Max - Player who moves first
Wants to come up with a strategy for what to do contingent upon Min playing his best.
An optimal strategy is a sequence of contingent decisions that will lead to outcomes at least as good as any other strategy when one is playing an infallible opponent.

It is useful to use a game tree when trying to reason about strategies.
Example: Game tree for tic-tac-toe.

Minimax value of a node

Useful for determining optimal strategy
Minimax - value(n)
$=\left\{\begin{array}{l}\text { Utility(n) if } n \text { is a terminal } \\ \operatorname{Max}_{s \varepsilon \operatorname{succ}(n)} \operatorname{MiniMax-value(S)~if~} n \text { is a max node } \\ \operatorname{Min}_{s \varepsilon \operatorname{succ}(n)} \operatorname{MiniMax-value(S)} \text { if } n \text { is a min node }\end{array}\right.$
Terminal Values
Example

x	x	0
0	x	x
	0	

MIN

$\begin{array}{ll}+1 & \text { Max wins } \\ -1 & \text { Min wins } \\ 0 & \text { Draw }\end{array}$
There are 2 possible next moves, o in the lower left, or lower right corner.

value of terminal board is 0 (right board) value of terminal board is 1 (left board)

Our goal is to have a board of value -1 to win the game, or at worst 0 to draw the game. An outcome of +1 means you lose the game. (if the system is min and player is max)

Minimax Algorithm

Given a current state, if player is MAX, choose a move so successor node of largest minimax value. If player is min, choose a move so successor node is of least value.

If the maximum depth of the game tree is m, and expected branching factor is b, then time complexity of minimax is $\mathbf{O}\left(\mathbf{b}^{\mathrm{m}}\right)$

It is possible depending on implementation to have a linear space complexity, ergo space complexity is not an issue.
$\mathbf{O}\left(\mathbf{b}^{\mathbf{m}}\right)$ for time complexity is impractical. We can do better on average, and get $\mathbf{O}\left(\mathbf{b}^{\mathbf{m} / 2}\right)$. Consider two level tree

MAX			
$3 /$	\mid		
$/ \\|$	$/ \backslash \backslash \backslash \mathrm{MIN}$		

3472
For the next subtree, since backed up value of $<=2$, and in doing the traversal of game tree,

Max has already seen a backed-up value 3, so Max doesn't need to expand $x \& y$, therefore the backed-up value 3 is called the alpha value, and ignoring $\mathrm{x} \& \mathrm{y}$ is called an alpha pruning, or alpha cut of tree.

The analogous thing for Min is a beta value, beta pruning or beta cut of tree.
For min, the beta value is the largest value as opposed to alpha's smallest value.
On average, beta/alpha pruning makes the minimax algorithm time complex $\mathbf{O}\left(\mathbf{b}^{\mathrm{m} / 2}\right)$

