
Learning Heuristics

Want to use solutions we found for a problem to come up with good heuristics for A*.
We’ll consider an inductive learning approach.

That is, the heuristic we’re learning is a linear function

h(n) = c1x1 (n) + c2x2(n) + + cmxm(n) (ci’s need to be learned)

Example: a feature of an 8 puzzle might be number of adjacent tiles which are in
sequence.

h(start board) should be = cost of optimal solution. for that board.

So we choose ci’s such that the difference square of h from the actual value is as small as
possible.

In order to calculate ci’s in the above equation, take the partial derivative of each ci, set
all the equations to 0 in order to maximize distance, and give sample points to solve the
system of equations.

Local Search and Optimization

In many search problems the path to the goal doesn’t matter.

Example – n queens problem. (placing n non-attacking queens on a blank chessboard)

By keeping around path info, we’re wasting memory.
Instead we should use
 Local Search Algorithm. These use a single state and look at neighboring stsates

to try to search for a more optimal solution. If a neighbor is more optimal,
usually switch to it.

 A complete-local search algorithm, finds a globally optimal solution if it exists.
 (i.e. satisfies goal)

State space landscape Global Optimal
Objective function plateau
 global minimum

 -> states

Local Search Techniques

1. Hill climbing move in the direction of increasing objective value until no
neighbor has higher value. Not complete. Can get stuck at local optima,
plateaux, etc…

Variants:
a Stochastic hill climbing

- choose at random from among uphill moves to do
(suffers same problem as 1)

b Random Restart Hill climbing

- Do hill climbing several times from randomly selected starting positions.
Choose best result returned.
(This works well for n queens)

Simulated Annealing

Idea from metallurgy where annealing means to heat up metal then slowly cool it to a low
energy state.

Algorithm.

Loop:

Pick a neighbor of current state at random.
If neighbor is more optimal
 then switch to it.
Otherwise
 Switch with probability exp(-k∆E/τ)

(k is the constant fudge factor)
(∆E is how much worse the neighbor is)
(τ is the current temperature)

	Learning Heuristics
	Local Search and Optimization
	State space landscapeGlobal Optimal
	Local Search Techniques
	Simulated Annealing

