

((lambda (x)
 (* x x)) 2)
prints out 4 because it is using 2 as an input
This is how the let function works, for local definitions

The statement above is equivalent to

(let ((x 2))
 (LAMBDA (X)
 (* X X)))

RECURSION (function composition)

repeat(f, n) f = function, n = # of times to compose it.

(define square
 (lambda (x)
 (* x x)))
(define compose
 (lambda (f g)
 (lambda (x) (f (g x)))))

the above function returns the f(g)

(define repeated
 (lambda (f n)

(if (> n 0)
 (compose f
 (repeated f (- n 1)))
 (lambda (x) x))))

(repeated square 3) 4) Composes square 3 times, with input 4

An Idiom for Object Oriented Programming

In OOP, you usually have a constructor for your object, and that object usually has methods.
In scheme, we can fake this.
 A constructor will be a function which takes some argument which takes messages and other inputs and
produces an output.
 In scheme, give constructors names beginning with make_
Suppose in java, we wanted a class which stores an int and allows you to get/set it. In scheme, we could have a
function

(define my_int

(make_hold_int 7))

The above function creates an object of type hold_int holding a 7 and gives this object the name my_int

To get the number (my_int get)
7

(my_int set 6)

6 This value will be internally changed

((eqv? Msg ‘distance-left)
 (distance-left player-x player-y edge)) returns number of visible squares to the left

(define blank-distance-right
 (lambda (x y edge)
 (- edge x)))

(define make-blank-game
 (lambda (m)
 (make-flex-game m 1
 blank-distance-up
 blank-distance-down
 blank-distance-left
 blank-distance-right)))

TESTING make-blank-game

-> (define maze (make-blank-game 5)) maze is the variable name, game is 5 x 5 board

-> (maze ‘right!)
#t

-> (maze ‘left!)
#t

-> (maze ‘left!)
#f

� �Page Break �

