
Searching for solutions

How do we solve above kinds of problems?
We will use problem to create a search tree. Root of tree is initial state. (vertices of tree called sarch nodes)
General strategy at a search node – apply goal test to see if node satisfies goal. If yes done. If no, apply successor
function to get all nodes reachable from current node in one step (expanding a node). Add these nodes to a list of
nodes we need to consider. Pick some node from this list and repeat.

Strategies for picking which node to expand next.

- Depth First Search (always expand left most node that still can be expanded)
- Breadth first search (Expand root, then expand all children of root until reach goal.)

Uninformed Search Strategies
(don’t have any way of telling if getting close to a solution)

Time Complexity of Breadth First Search
Suppose each node expands into b children
Then to search for a goal of depth d takes time proportional to
1 + b + b2 + … + bd = bd+1-1 = O(bd)
Space complexity is also O(bd)

Depth First Search – Always expand the deepest node that can be expanded (if tie choose left most node)

Time complexity of DFS

If tree has a solution of depth m and this bounds length of any path, let’s say branching factor b. Then time
takes is O(bm)

Only need to remember path to use algorithm so space complexity is O(b*m)

Problem can get stuck on infinite branches and never find a solution.

Depth limited search upto L search

- does depth first search to some fixed depth L
 (i.e. not allowed to expand node to depth >= L)
Problem might never find solution because solution has depth > L

Iterative deepening search
Do DLS(0)
 DLS(1)
 DLS(2)
 …
 Until find a solution
Space Complexity O(bm)

Time Complexity O(bm)

