NFAs and Regular Expressions.

CS154
Chris Pollett
Outline

• Closure Properties of NFAs
• Regular Expression
• Equivalence with Finite Automata
Corollary of NFA-DFA equivalence

• Every DFA is trivially an NFA.
• Last day, we showed given an NFA how to construct a DFA recognizing the same language.
• Therefore, we get that a language is regular if and only if it is recognized by some NFA.
NFA based proofs of Closure Properties of Regular Languages

- Closure under union

- Closure under concatenation

- Closure under star
Introduction to Regular Expressions

• In arithmetic, we can use the operations + and * to build up expressions such as:
 \((5 + 3) * 4\).

• Similarly we can use the regular operations to build up expressions describing regular languages.

• For instance, \(0(0 \cup 1)^*\) (We use juxtaposition to abbreviate concatenation: \(0o(0 \cup 1)^*\)).

• This means the language which results from concatenating the language containing 0 with the language of \((0 \cup 1)^*\). This in turn is the star of the union of the two languages one containing just 0; the other containing just 1.

• These kind of expressions are used in many modern programming languages: Perl, PHP, Java, AWK, GREP,
Formal Definition of a Regular Expression

• We say that R is a regular expression if R is
 1. a for some symbol a in the alphabet Σ,
 2. ε
 3. \emptyset
 4. $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions
 5. $(R_1 \circ R_2)$ where R_1 and R_2 are regular expressions
 6. $(R_1)^*$ where R_1 is a regular expression

• We write R^+ as a shorthand for RR^*.
• We write $L(R)$ for the language given by the regular expression
Examples of the Definition

- $0^*10^* = \{w \mid w \text{ contains a single 1}\}$
- $\ (01 \cup 10) = \{01, 10\}$
- $(\Sigma \Sigma)^* = \{w \mid w \text{ is of even length}\}$
- $(\varepsilon \cup 0)(\varepsilon \cup 1) = \{\varepsilon, 0, 1, 01\}$
- $1^* \emptyset = \emptyset$
- $\emptyset^* = \{\varepsilon\}$
Equivalence with Finite Automata

- We want to show that a language is regular if and only if some regular expression describes it.
- We will do this in two steps:
 - Prove if a language is described by a regular expression, then it is regular
 - Prove if a language is regular, then it is described by a regular expression.
Proof that regular expression implies regular

- It suffices to come up with NFAs for the three languages (1), (2), (3) a couple slides back since we already know the regular languages are closed under union, concatenation and *.

1. Let \(R = a \) for some \(a \) in \(\Sigma \). Then the following NFA recognizes the languages contain only \(a \).

2. Let \(R = \varepsilon \). Then the following NFA recognizes it:

3. Let \(R = \emptyset \). Then the following NFA recognizes it:
Proof that regular implies the language of some regular expression

- We will again split the proof into two parts:
 - We first define a new kind of finite automata called a generalized nondeterministic finite automata (GNFA) and show how to convert any DFA into a GNFA.
 - Then we show how to convert any GNFA into a regular expression.

- To begin we define a GNFA to be an NFA where we allow transition arrows to have any regular expression as labels:
Converting DFAs to GFNA

• We will be interested in GNFAs that have the following special form:
 – The start state has transition arrows to every other state but no arrows coming in from other states.
 – There is a single accept state, and it has arrows coming in from every other state but no arrows going to any other state.
 – Except for the start and accepts state, one arrow goes from from every state to every other state and also from each state to itself.
• To convert a DFA into a GNFA, we add a new start state with and ε arrow to the old start state and a new accept state with ε arrows from the old accept states.
• If any arrows have multiple labels (or if we have two or more arrows between the same two states) we replace each with a single label whose label is the union labels of the these arrows.
• Finally, we add arrows with labels ∅ between states which had no labels so as to satisfy the remaining conditions of our special form.