Decidable Languages

CS154
Chris Pollett
Apr 3, 2006.
Outline

• Introduction
• Decidable problems for Regular Languages
• Decidable problems for CFLs
Introduction

• We have shown how it is possible to simulate many different models of computation on a Turing Machine.
• Today we look at what sort of problems can be decided by Turing Machines.
• Recall this is a stronger notion than recognized.
• To decide a language we need to be able to accept if the string is in the language and reject if it is not.
DFA Acceptance

- The acceptance problem for DFAs, is the problem of determining if a string is in the language of some DFA.
- Let $A_{DFA} = \{ <B,w> \mid B \text{ is a DFA that accepts input string } w \}$.

Theorem A_{DFA} is decidable.

Proof Idea Let M be the TM that does the following:

"On input $<B,w>$, where B is a DFA and w is a string:

1. Simulate B on w
2. If the simulation ends in an accept state, *accept*. If it ends in a nonaccepting state, *reject."
NFA Acceptance

• Similarly, we can let $A_{NFA} = \{ <N,w> \mid N \text{ is an NFA that accepts input string } w \}$.

Theorem A_{NFA} is decidable.

Proof Let N be the TM that does the following:

“On input $<N,w>$, where N is a NFA and w is a string:

1. Convert N to an equivalent DFA C using the power set construction.
2. Simulate C on w
3. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject.”
Regular Expression Acceptance

• Let \(A_{\text{REX}} = \{ <R, w> \mid R \text{ is a regular expression that generates string } w \} \).

Theorem \(A_{\text{REX}} \) is decidable.

Proof Let \(P \) be the TM that does the following:

“On input \(<R, w> \), where \(R \) is a regular expression and \(w \) is a string:

1. Convert \(R \) to an equivalent DFA \(C \) using the regular expression to NFA conversion algorithm followed by the power set construction.
2. Simulate \(C \) on \(w \).
3. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject.”
Emptiness Testing

- Another interesting question about a regular language is whether or not it is empty.
- Supposedly, somebody in the 60’s at MIT wrote a very complicated thesis about some class of languages showing all its great properties.
- Later it was shown this class of languages was empty. So the thesis was bogus.
- Let $E_{DFA}=\{<A> \mid A$ is a DFA and $L(A)$ is empty $\}$.

Theorem E_{DFA} is decidable.

Proof A DFA accepts some string iff reaching an accept state from the start state by traveling along the arrows of the DFA is possible. Let T be the following TM which tests for this:

$T= \text{“On input } <A> \text{ where } A \text{ is a DFA:} $

1. Mark the start state of A.
2. Repeat until no new states get marked:
 1. Mark any state that has a transition coming into it from any state that is already marked.
3. If no accept state is marked, accept; otherwise, reject.”
Equality Testing

- Emptiness testing can be used to check if two DFAs, A, B, recognize the same language.
- Let $L(C) = (L(A) \cap \overline{L(B)}) \cup (L(B) \cap \overline{L(A)})$
- Notice $L(C)$ is empty iff $L(A) = L(B)$.
- Let $EQ_{DFA} = \{<A,B> | A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$.

Theorem EQ_{DFA} is decidable.

Proof Let F be the TM which does the following:

$F =$ “On input $<A,B>$, where A and B are DFAs.
1. Construct C as described above.
2. Run T of the last slide and accept or reject as it does.””
CFG Acceptance

• We now turn to the question of decidability for problems related to context-free languages.
• Let $A_{CFG} = \{ <G,w> \mid G \text{ is a CFG that generates string } w \}$.

Theorem A_{CFG} is decidable.

Proof Let S be the following Turing machine:

S = “On input $<G,w>$, where G is a CFG and w is a string:

1. Convert G to Chomsky Normal Form.
2. Run the CYK algorithm according to G on input w.
3. Accept it this algorithm accepts; reject if it rejects.”