Homework 5

SJSU Students
May 18, 2006

Exercise 5.4
If A <,, B and B is a regular language, does that imply that A is a regular
language? Why or why not?

No, it does not. For example, {a"b"|n >= 0} < m{a}. The reduction
first tests whether its input is a member of {a"b"|n >= 0}. This can easily
be done by a Turing computable function. If it is of this form, it outputs the
string a, and if not, it outputs the string b.

Exercise 5.13
Let U ={(M,q)| q is a useless state in TM M}
Suppose U is decidable and TM T decides it.
Then construct TM Z that uses T to decide Eryy
where Ery = {(M)|M is a TM and L (M) =0}
Z =7 On input (M) :
1. Run TM T on input (M, guccept) Where Quecepr is the accept state of M
2. If T accepts, reject. If T rejects, accept.

Exercise 5.21
AMBIGere={(G)|G is an ambiguous CFG}
Assume AMBIG¢grq is decidable then there exists some TM to decide it.
Define TM M pcp to do the following on input (P) with P={[t;/b1]...[t,,/bn]}
a set of dominoes with t;...t,,, by...b, € 2.

1. Construct a CFG G = (V,I', R, S) with

V={S, T, B}

r=XH{ai,....an}
Rules:
S —T|B
T —>t1Ta1 |]tnTan|t1a1 | |tnan
B —>b1Ba1 | |anan|b1a1 | |bnan
2. Run M on input G, accept if M accepts, reject if M reject

a decider for PCP. But we know PCP is undecidable.
Need to show PePCP < GeAMBIGcrg
"="" Assume P has a match: t;;t;s...t;x = b;ibss...bjr. Then the string
tﬂtiQ...tikaikaik_l...aﬂ:bﬂbig...bz»k.aikaik_l...aﬂ has two diffirent leftmost deriva-
tion, one from T and one from B. "<”’ Assume G is ambiguous, then some
string w is at least two different leftmost derivations.
— All string generated by G have the from wya;za;,_1....a;; where wy € 3*.
— Except from the application of the rules containing the start variable on
the left side, all other steps in the derivation are uniquely determined by the
sequence a;rpagke—1---ad41
—Therefore w; has at most 2 leftmost derivations:
1. S=T = tyTa; =... =t .tpaipai_1...a;1
2. S = B = bjTa;; =... =b;i...bipaiain_1...a;1
— Since tﬂtig...tikaikaz-k_l...a“:bilbig...bikaikaik_l...aﬂ it follows tz’lmtz‘k:bz’lmbik
and P has a match.
Exercise 5.34
Consider the problem of determining whether a PDA accepts some string of
the form {ww|w € {0,1}*}. Use the computation history method to show
this problem is undecidable.

Proof. Suppose it was decidable given (M) whether L(M) contains such a
string. Let R be a decision for this, we will show how R could be used to
get a decision procedure for Ary,. Give an input (M, x) for Ay, consider
the following language L := {ww| w an appropriate computation history}.
Here we require w be in the format #Co#CT#Co#tcl# - - - #Con, #CE 1 #.
Given (M, x) we could build a PDA (P) which recognizes L. P checks Cj is a
start configuration using its hard-coded value x in its states. P pushes all of
w onto the stack, nondeterministically guessing w endpoint. It then pops the
characters of w off one by one as it reads the second copy. While doing this
it can check if a given C; is followed by the appropriate next configuration.
Finally, it checks the last configuration is accepting. So given (M,), we can

2

make a decision procedure for Ary; by next building (P), then running R on
(P), if R accepts, our procedure accepts; if R rejects our procedure rejects.
Exercise 6.13

For each m > 1 let Z,, = {0,1,2,...,m — 1}, and let F,,, = (Z,,,+, X) be
the model whose universe is Z,, and that has relations corresponding to the
+ and X relations computed modulo m. Show that for each m the Th(F,,)
is decidable.

Proof. The proof is by induction of the complexity of the sentence ¢ we
are trying to check is in Th(F,,). To keep things general, we will give an
algorithm which works on a formula ¢ together with an assignment v of the
variables to elements of Z,,. In the case, where ¢ is a sentence there will
be no unbound variables and so v can be empty. In the base, we have an
atomic formula, which consists of an equation t(x1,...,2,) = s(x1,...,2,)
where t and s are terms over + and x. A TM can look at the codes for
these two terms and substitute in the values of the variables assignment v
and then compute the values of the terms. This is possible since + and X
are computable functions. If the values of ¢ and s are the same the machine
would accept; otherwise, it would reject. Checking if b, ¢ A, ¢ Vi) are true
based on the the values obtained for ¢ and v is easily Turing computable. To
check the truth of Jy¢(y,), the TM could check each variable assignment
0,1,...m — 1 for y to see if any make ¢(y,T) true, if so accept, otherwise
reject. To check the truth of Vy¢(y, &), the TM could check each variable
assignment 0,1, ...m — 1 for y to see if that all of them make ¢(y,) true, if
so accept, otherwise reject. This completes the induction.

Exercise 6.22

Show that the function K (x) is not a computable function.

Proof. Suppose K(z) is computable by some Turing Machine. Then the
function f(z) which computes:

min{y|K(y) > 2"}

would also be Turing computable. Now consider K (f(z)), by the definition
of f(x) it should by of size > 2*. On the hand the description (f,x) has
length |(f)| + |z|, as = grows this value will be strictly less than 2% giving a
contradiction.

