Homework 5

SJSU Students

May 18, 2006

Exercise 5.4

If $A \leq_{m} B$ and B is a regular language, does that imply that A is a regular language? Why or why not?

No, it does not. For example, $\left\{a^{n} b^{n} \mid n>=0\right\} \leq m\{a\}$. The reduction first tests whether its input is a member of $\left\{a^{n} b^{n} \mid n>=0\right\}$. This can easily be done by a Turing computable function. If it is of this form, it outputs the string a, and if not, it outputs the string b.

Exercise 5.13

Let $U=\{\langle M, q\rangle \mid \mathrm{q}$ is a useless state in TM $M\}$
Suppose U is decidable and TM T decides it.
Then construct TM Z that uses T to decide $E_{T M}$
where $E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=0\}$
$Z="$ On input $\langle M\rangle$:

1. Run TM T on input $\left\langle M, q_{\text {accept }}\right\rangle$ where $q_{\text {accept }}$ is the accept state of M 2. If T accepts, reject. If T rejects, accept.

Exercise 5.21
$\mathrm{AMBIG}_{C F G}=\{\langle\mathrm{G}\rangle \mid \mathrm{G}$ is an ambiguous CFG $\}$
Assume AMBIG ${ }_{C F G}$ is decidable then there exists some TM to decide it.
Define TM $\mathrm{M}_{P C P}$ to do the following on input $\langle\mathrm{P}\rangle$ with $\mathrm{P}=\left\{\left[\mathrm{t}_{1} / \mathrm{b}_{1}\right] \ldots\left[\mathrm{t}_{n} / \mathrm{b}_{n}\right]\right\}$
a set of dominoes with $\mathrm{t}_{1} \ldots \mathrm{t}_{n}, \mathrm{~b}_{1} \ldots \mathrm{~b}_{n} \in \Sigma$.

1. Construct a $\mathrm{CFG} G=(\mathrm{V}, \Gamma, \mathrm{R}, \mathrm{S})$ with

$$
\mathrm{V}=\{\mathrm{S}, \mathrm{~T}, \mathrm{~B}\}
$$

$\Gamma=\Sigma \bigcup\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}\right\}$
Rules:
$\mathrm{S} \rightarrow \mathrm{T} \mid \mathrm{B}$
$\mathrm{T} \rightarrow \mathrm{t}_{1} \mathrm{Ta}_{1}|\ldots| \mathrm{t}_{n} \mathrm{Ta}_{n}\left|\mathrm{t}_{1} \mathrm{a}_{1}\right| \ldots \mid \mathrm{t}_{n} \mathrm{a}_{n}$
$\mathrm{B} \rightarrow \mathrm{b}_{1} \mathrm{Ba}_{1}|\ldots| \mathrm{b}_{n} \mathrm{Ba}_{n}\left|\mathrm{~b}_{1} \mathrm{a}_{1}\right| \ldots \mid \mathrm{b}_{n} \mathrm{a}_{n}$
2. Run M on input G , accept if M accepts, reject if M reject a decider for PCP. But we know PCP is undecidable.
Need to show $\mathrm{P} \in \mathrm{PCP} \Leftrightarrow \mathrm{G} \in \mathrm{AMBIG}_{C F G}$
$" \Rightarrow "$ ' Assume P has a match: $\mathrm{t}_{i 1} \mathrm{t}_{i 2} \ldots \mathrm{t}_{i k}=\mathrm{b}_{i 1} \mathrm{~b}_{i 2} \ldots \mathrm{~b}_{i k}$. Then the string $\mathrm{t}_{i 1} \mathrm{t}_{i 2} \ldots \mathrm{t}_{i k} \mathrm{a}_{i k} \mathrm{a}_{i k-1} \ldots \mathrm{a}_{i 1}=\mathrm{b}_{i 1} \mathrm{~b}_{i 2} \ldots \mathrm{~b}_{i k} \mathrm{a}_{i k} \mathrm{a}_{i k-1} \ldots \mathrm{a}_{i 1}$ has two diffirent leftmost derivation, one from T and one from $\mathrm{B} . " \Leftarrow "$ ' Assume G is ambiguous, then some string w is at least two different leftmost derivations.
\rightarrow All string generated by G have the from $\mathrm{w}_{1} \mathrm{a}_{i k} \mathrm{a}_{i k-1} \ldots \mathrm{a}_{i 1}$ where $\mathrm{w}_{1} \in \Sigma^{*}$.
\rightarrow Except from the application of the rules containing the start variable on the left side, all other steps in the derivation are uniquely determined by the sequence $\mathrm{a}_{i k} \mathrm{a}_{i k-1} \ldots \mathrm{a}_{i 1}$
\rightarrow Therefore w_{1} has at most 2 leftmost derivations:

1. $\mathrm{S} \Rightarrow \mathrm{T} \Rightarrow \mathrm{t}_{i 1} \mathrm{Ta}_{i 1} \Rightarrow \ldots \Rightarrow \mathrm{t}_{i 1} \ldots \mathrm{t}_{i k} \mathrm{a}_{i k} \mathrm{a}_{i k-1} \ldots \mathrm{a}_{i 1}$
2. $\mathrm{S} \Rightarrow \mathrm{B} \Rightarrow \mathrm{b}_{i 1} \mathrm{Ta}_{i 1} \Rightarrow \ldots \Rightarrow \mathrm{~b}_{i 1} \ldots \mathrm{~b}_{i k} \mathrm{a}_{i k} \mathrm{a}_{i k-1} \ldots \mathrm{a}_{i 1}$
\rightarrow Since $\mathrm{t}_{i 1} \mathrm{t}_{i 2} \ldots \mathrm{t}_{i k} \mathrm{a}_{i k} \mathrm{a}_{i k-1} \ldots \mathrm{a}_{i 1}=\mathrm{b}_{i 1} \mathrm{~b}_{i 2} \ldots \mathrm{~b}_{i k} \mathrm{a}_{i k} \mathrm{a}_{i k-1} \ldots \mathrm{a}_{i 1}$ it follows $\mathrm{t}_{i 1} \ldots \mathrm{t}_{i k}=\mathrm{b}_{i 1} \ldots \mathrm{~b}_{i k}$ and P has a match.
Exercise 5.34
Consider the problem of determining whether a PDA accepts some string of the form $\left\{w w \mid w \in\{0,1\}^{*}\right\}$. Use the computation history method to show this problem is undecidable.

Proof. Suppose it was decidable given $\langle M\rangle$ whether $L(M)$ contains such a string. Let R be a decision for this, we will show how R could be used to get a decision procedure for $A_{T M}$. Give an input $\langle M, x\rangle$ for $A_{T M}$, consider the following language $L:=\{w w \mid w$ an appropriate computation history $\}$. Here we require w be in the format $\# C_{0} \# C_{1}^{R} \# C_{2} \# c_{3}^{R} \# \cdots \# C_{2 m} \# C_{2 m+1}^{R} \#$. Given $\langle M, x\rangle$ we could build a PDA $\langle P\rangle$ which recognizes L. P checks C_{0} is a start configuration using its hard-coded value x in its states. P pushes all of w onto the stack, nondeterministically guessing w endpoint. It then pops the characters of w off one by one as it reads the second copy. While doing this it can check if a given C_{i} is followed by the appropriate next configuration. Finally, it checks the last configuration is accepting. So given $\langle M, x\rangle$, we can
make a decision procedure for $A_{T M}$ by next building $\langle P\rangle$, then running R on $\langle P\rangle$, if R accepts, our procedure accepts; if R rejects our procedure rejects. Exercise 6.13
For each $m>1$ let $\mathcal{Z}_{m}=\{0,1,2, \ldots, m-1\}$, and let $\mathcal{F}_{m}=\left(\mathcal{Z}_{m},+, \times\right)$ be the model whose universe is \mathcal{Z}_{m} and that has relations corresponding to the + and \times relations computed modulo m. Show that for each m the $\operatorname{Th}\left(\mathcal{F}_{m}\right)$ is decidable.

Proof. The proof is by induction of the complexity of the sentence ϕ we are trying to check is in $\operatorname{Th}\left(\mathcal{F}_{m}\right)$. To keep things general, we will give an algorithm which works on a formula ϕ together with an assignment ν of the variables to elements of \mathcal{Z}_{m}. In the case, where ϕ is a sentence there will be no unbound variables and so ν can be empty. In the base, we have an atomic formula, which consists of an equation $t\left(x_{1}, \ldots, x_{n}\right)=s\left(x_{1}, \ldots, x_{n}\right)$ where t and s are terms over + and \times. A TM can look at the codes for these two terms and substitute in the values of the variables assignment ν and then compute the values of the terms. This is possible since + and \times are computable functions. If the values of t and s are the same the machine would accept; otherwise, it would reject. Checking if $\not \phi, \phi \wedge \psi, \phi \vee \psi$ are true based on the the values obtained for ϕ and ψ is easily Turing computable. To check the truth of $\exists y \phi(y, \vec{x})$, the TM could check each variable assignment $0,1, \ldots m-1$ for y to see if any make $\phi(y, \vec{x})$ true, if so accept, otherwise reject. To check the truth of $\forall y \phi(y, \vec{x})$, the TM could check each variable assignment $0,1, \ldots m-1$ for y to see if that all of them make $\phi(y, \vec{x})$ true, if so accept, otherwise reject. This completes the induction.
Exercise 6.22
Show that the function $K(x)$ is not a computable function.

Proof. Suppose $K(x)$ is computable by some Turing Machine. Then the function $f(x)$ which computes:

$$
\min \left\{y \mid K(y)>2^{x}\right\}
$$

would also be Turing computable. Now consider $K(f(x))$, by the definition of $f(x)$ it should by of size $>2^{x}$. On the hand the description $\langle f, x\rangle$ has length $|\langle f\rangle|+|x|$, as x grows this value will be strictly less than 2^{x} giving a contradiction.

