Homework 5

SJSU Students

May 18, 2006

Exercise 5.4

If $A \leq_m B$ and B is a regular language, does that imply that A is a regular language? Why or why not?

No, it does not. For example, $\{a^n b^n | n \ge 0\} \le m\{a\}$. The reduction first tests whether its input is a member of $\{a^n b^n | n \ge 0\}$. This can easily be done by a Turing computable function. If it is of this form, it outputs the string a, and if not, it outputs the string b.

Exercise 5.13

Let $U = \{\langle M, q \rangle \mid q \text{ is a useless state in TM } M\}$ Suppose U is decidable and TM T decides it. Then construct TM Z that uses T to decide E_{TM} where $E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = 0\}$ Z =" On input $\langle M \rangle$: 1. Run TM T on input $\langle M, q_{accept} \rangle$ where q_{accept} is the accept state of M2. If T accepts, reject. If T rejects, accept.

Exercise 5.21

AMBIG_{CFG}={ $\langle G \rangle$ |G is an ambiguous CFG} Assume AMBIG_{CFG} is decidable then there exists some TM to decide it. Define TM M_{PCP} to do the following on input $\langle P \rangle$ with P={ $[t_1/b_1]...[t_n/b_n]$ } a set of dominoes with $t_1...t_n$, $b_1...b_n \in \Sigma$. 1. Construct a CFG G = (V, Γ , R, S) with

 $V = \{S, T, B\}$

$$\begin{split} \Gamma &= \Sigma \bigcup \{ \mathbf{a}_1, \dots, \mathbf{a}_n \} \\ \text{Rules:} \\ \mathbf{S} &\to \mathbf{T} | \mathbf{B} \\ \mathbf{T} &\to \mathbf{t}_1 \mathbf{T} \mathbf{a}_1 | \dots | \mathbf{t}_n \mathbf{T} \mathbf{a}_n | \mathbf{t}_1 \mathbf{a}_1 | \dots | \mathbf{t}_n \mathbf{a}_n \\ \mathbf{B} &\to \mathbf{b}_1 \mathbf{B} \mathbf{a}_1 | \dots | \mathbf{b}_n \mathbf{B} \mathbf{a}_n | \mathbf{b}_1 \mathbf{a}_1 | \dots | \mathbf{b}_n \mathbf{a}_n \end{split}$$

2. Run M on input G, accept if M accepts, reject if M reject a decider for PCP. But we know PCP is undecidable.

Need to show $P \in PCP \Leftrightarrow G \in AMBIG_{CFG}$

" \Rightarrow " Assume P has a match: $t_{i1}t_{i2}...t_{ik} = b_{i1}b_{i2}...b_{ik}$. Then the string $t_{i1}t_{i2}...t_{ik}a_{ik}a_{ik-1}...a_{i1}=b_{i1}b_{i2}...b_{ik}a_{ik}a_{ik-1}...a_{i1}$ has two different leftmost derivation, one from T and one from B. " \Leftarrow " Assume G is ambiguous, then some string w is at least two different leftmost derivations.

→ All string generated by G have the from $w_1 a_{ik} a_{ik-1} \dots a_{i1}$ where $w_1 \in \Sigma^*$. → Except from the application of the rules containing the start variable on the left side, all other steps in the derivation are uniquely determined by the sequence $a_{ik} a_{ik-1} \dots a_{i1}$

 \rightarrow Therefore w₁ has at most 2 leftmost derivations:

1. $S \Rightarrow T \Rightarrow t_{i1}Ta_{i1} \Rightarrow \dots \Rightarrow t_{i1}\dots t_{ik}a_{ik}a_{ik-1}\dots a_{i1}$

2. $S \Rightarrow B \Rightarrow b_{i1}Ta_{i1} \Rightarrow ... \Rightarrow b_{i1}...b_{ik}a_{ik}a_{ik-1}...a_{i1}$

 $\rightarrow \text{Since } t_{i1}t_{i2}...t_{ik}a_{ik}a_{ik-1}...a_{i1}=b_{i1}b_{i2}...b_{ik}a_{ik}a_{ik-1}...a_{i1} \text{ it follows } t_{i1}...t_{ik}=b_{i1}...b_{ik} \text{ and } P \text{ has a match.}$

Exercise 5.34

Consider the problem of determining whether a PDA accepts some string of the form $\{ww|w \in \{0,1\}^*\}$. Use the computation history method to show this problem is undecidable.

Proof. Suppose it was decidable given $\langle M \rangle$ whether L(M) contains such a string. Let R be a decision for this, we will show how R could be used to get a decision procedure for A_{TM} . Give an input $\langle M, x \rangle$ for A_{TM} , consider the following language $L := \{ww | w \text{ an appropriate computation history}\}$. Here we require w be in the format $\#C_0\#C_1^R\#C_2\#c_3^R\#\cdots \#C_{2m}\#C_{2m+1}^R\#C_1 \oplus C_1 \oplus C_1 \oplus C_2 \oplus C_2$

make a decision procedure for A_{TM} by next building $\langle P \rangle$, then running R on $\langle P \rangle$, if R accepts, our procedure accepts; if R rejects our procedure rejects. Exercise 6.13

For each m > 1 let $\mathcal{Z}_m = \{0, 1, 2, \dots, m-1\}$, and let $\mathcal{F}_m = (\mathcal{Z}_m, +, \times)$ be the model whose universe is \mathcal{Z}_m and that has relations corresponding to the + and \times relations computed modulo m. Show that for each m the $Th(\mathcal{F}_m)$ is decidable.

Proof. The proof is by induction of the complexity of the sentence ϕ we are trying to check is in $Th(\mathcal{F}_m)$. To keep things general, we will give an algorithm which works on a formula ϕ together with an assignment ν of the variables to elements of \mathcal{Z}_m . In the case, where ϕ is a sentence there will be no unbound variables and so ν can be empty. In the base, we have an atomic formula, which consists of an equation $t(x_1, \ldots, x_n) = s(x_1, \ldots, x_n)$ where t and s are terms over + and \times . A TM can look at the codes for these two terms and substitute in the values of the variables assignment ν and then compute the values of the terms. This is possible since + and \times are computable functions. If the values of t and s are the same the machine would *accept*; otherwise, it would *reject*. Checking if $\phi, \phi \land \psi, \phi \lor \psi$ are true based on the the values obtained for ϕ and ψ is easily Turing computable. To check the truth of $\exists y \phi(y, \vec{x})$, the TM could check each variable assignment $0, 1, \ldots, m-1$ for y to see if any make $\phi(y, \vec{x})$ true, if so accept, otherwise *reject.* To check the truth of $\forall y \phi(y, \vec{x})$, the TM could check each variable assignment $0, 1, \ldots m-1$ for y to see if that all of them make $\phi(y, \vec{x})$ true, if so *accept*, otherwise *reject*. This completes the induction.

Exercise 6.22

Show that the function K(x) is not a computable function.

Proof. Suppose K(x) is computable by some Turing Machine. Then the function f(x) which computes:

$$\min\{y|K(y) > 2^x\}$$

would also be Turing computable. Now consider K(f(x)), by the definition of f(x) it should by of size $> 2^x$. On the hand the description $\langle f, x \rangle$ has length $|\langle f \rangle| + |x|$, as x grows this value will be strictly less than 2^x giving a contradiction.