
Homework 5

SJSU Students

May 18, 2006

Exercise 5.4
If A ≤m B and B is a regular language, does that imply that A is a regular
language? Why or why not?

No, it does not. For example, {anbn|n >= 0} ≤ m{a}. The reduction
first tests whether its input is a member of {anbn|n >= 0}. This can easily
be done by a Turing computable function. If it is of this form, it outputs the
string a, and if not, it outputs the string b.

Exercise 5.13
Let U = {〈M, q〉 | q is a useless state in TM M}
Suppose U is decidable and TM T decides it.
Then construct TM Z that uses T to decide ETM

where ETM = {〈M〉 |M is a TM and L (M) = 0}
Z = ” On input 〈M〉 :
1. Run TM T on input 〈M, qaccept〉 where qaccept is the accept state of M
2. If T accepts, reject. If T rejects, accept.

Exercise 5.21
AMBIGCFG={〈G〉|G is an ambiguous CFG}
Assume AMBIGCFG is decidable then there exists some TM to decide it.
Define TM MPCP to do the following on input 〈P〉 with P={[t1/b1]...[tn/bn]}
a set of dominoes with t1...tn, b1...bn ∈ Σ.

1. Construct a CFG G = (V,Γ, R, S) with
V={S, T, B}

1

Γ=Σ
⋃
{a1,...,an}

Rules:
S →T|B

T →t1Ta1|...|tnTan|t1a1|...|tnan

B →b1Ba1|...|bnBan|b1a1|...|bnan

2. Run M on input G, accept if M accepts, reject if M reject
a decider for PCP. But we know PCP is undecidable.
Need to show P∈PCP ⇔ G∈AMBIGCFG

”⇒”’ Assume P has a match: ti1ti2...tik = bi1bi2...bik. Then the string
ti1ti2...tikaikaik−1...ai1=bi1bi2...bikaikaik−1...ai1 has two diffirent leftmost deriva-
tion, one from T and one from B. ”⇐”’ Assume G is ambiguous, then some
string w is at least two different leftmost derivations.
→ All string generated by G have the from w1aikaik−1....ai1 where w1 ∈ Σ∗.
→ Except from the application of the rules containing the start variable on
the left side, all other steps in the derivation are uniquely determined by the
sequence aikaik−1...ai1

→Therefore w1 has at most 2 leftmost derivations:
1. S ⇒ T ⇒ ti1Tai1 ⇒... ⇒ti1...tikaikaik−1...ai1

2. S ⇒ B ⇒ bi1Tai1 ⇒... ⇒bi1...bikaikaik−1...ai1

→ Since ti1ti2...tikaikaik−1...ai1=bi1bi2...bikaikaik−1...ai1 it follows ti1...tik=bi1...bik

and P has a match.
Exercise 5.34
Consider the problem of determining whether a PDA accepts some string of
the form {ww|w ∈ {0, 1}∗}. Use the computation history method to show
this problem is undecidable.

Proof. Suppose it was decidable given 〈M〉 whether L(M) contains such a
string. Let R be a decision for this, we will show how R could be used to
get a decision procedure for ATM . Give an input 〈M,x〉 for ATM , consider
the following language L := {ww| w an appropriate computation history}.
Here we require w be in the format #C0#C

R
1 #C2#c

R
3 # · · ·#C2m#CR

2m+1#.
Given 〈M,x〉 we could build a PDA 〈P 〉 which recognizes L. P checks C0 is a
start configuration using its hard-coded value x in its states. P pushes all of
w onto the stack, nondeterministically guessing w endpoint. It then pops the
characters of w off one by one as it reads the second copy. While doing this
it can check if a given Ci is followed by the appropriate next configuration.
Finally, it checks the last configuration is accepting. So given 〈M,x〉, we can

2

make a decision procedure for ATM by next building 〈P 〉, then running R on
〈P 〉, if R accepts, our procedure accepts; if R rejects our procedure rejects.
Exercise 6.13
For each m > 1 let Zm = {0, 1, 2, . . . ,m − 1}, and let Fm = (Zm,+,×) be
the model whose universe is Zm and that has relations corresponding to the
+ and × relations computed modulo m. Show that for each m the Th(Fm)
is decidable.

Proof. The proof is by induction of the complexity of the sentence φ we
are trying to check is in Th(Fm). To keep things general, we will give an
algorithm which works on a formula φ together with an assignment ν of the
variables to elements of Zm. In the case, where φ is a sentence there will
be no unbound variables and so ν can be empty. In the base, we have an
atomic formula, which consists of an equation t(x1, . . . , xn) = s(x1, . . . , xn)
where t and s are terms over + and ×. A TM can look at the codes for
these two terms and substitute in the values of the variables assignment ν
and then compute the values of the terms. This is possible since + and ×
are computable functions. If the values of t and s are the same the machine
would accept; otherwise, it would reject. Checking if 6 φ, φ∧ψ, φ∨ψ are true
based on the the values obtained for φ and ψ is easily Turing computable. To
check the truth of ∃yφ(y, ~x), the TM could check each variable assignment
0, 1, . . .m − 1 for y to see if any make φ(y, ~x) true, if so accept, otherwise
reject. To check the truth of ∀yφ(y, ~x), the TM could check each variable
assignment 0, 1, . . .m− 1 for y to see if that all of them make φ(y, ~x) true, if
so accept, otherwise reject. This completes the induction.
Exercise 6.22
Show that the function K(x) is not a computable function.

Proof. Suppose K(x) is computable by some Turing Machine. Then the
function f(x) which computes:

min{y|K(y) > 2x}

would also be Turing computable. Now consider K(f(x)), by the definition
of f(x) it should by of size > 2x. On the hand the description 〈f, x〉 has
length |〈f〉|+ |x|, as x grows this value will be strictly less than 2x giving a
contradiction.

3

