
CS 154 Section 3—Homework #4

SJSU Students

May 8, 2006

Exercise 3.9
Let a k-PDA be a pushdown automata that has k stacks. Thus a 0-PDA

is an NFA and a 1-PDA is a conventional PDA. You already know that

1-PDAs are more powerful (recognize a larger class of languages)

than 0-PDAs

a. Show that 2-PDAs are more powerful than 1-PDAs.

b. Show that 3-PDAs are not more powerful than 2-PDAs.

(Hint: Simulate a Turing machine tape with two stacks.)

(a.) By Example 2.36, no PDA recognizes

B = {anbncn|n >= 0}.

The following high level description of a 2-PDA recognizes B: While reading
the string, push all the a’s that appear onto stack 1. If we see b’s or c’s
before a’ we immediately reject. Then push all the b’s that follow the a’s in
the input onto stack2. If it sees any a’s at this stage, reject. When it sees the
first c, pop stack 1 and stack 2 at the same time. After this, reject the input
if it sees any a’s or b’s in the input. Pop stack 1 and stack 2 for each input
character c reads. If the input ends at the same time both stacks become
empty, accept. Otherwise, reject.

b. We show that a 2-PDA can simulate a Turing Machine (TM). In ad-
dition, a 3-tape Nondeterministic Turing Machine (NTM) can simulate a 3-
PDA, and an ordinary deterministic 1-tape TM can simulate a 3-tape NTM.

1

Therefore a 2-PDA can simulate a 3-PDA, and so they are equivalent in
power. The simulation of a TM by a 2-PDA is as follows: Record the tape
of the TM onto two stacks, stack 1 stores the characters on the left of the
head, with the bottom of stack storing the leftmost character of the tape
in the TM. Stack 2 stores the characters on the right of the head, with the
bottom of the stack storing the rightmost non-blank character on the tape
in the TM. In other words, if a TM configuration is adxb, the corresponding
2-PDA is in state dx, with stack 1 storing the string a and stack 2 storing the
string b to power of R, both from bottom to top. For each transition in the
TM, the corresponding PDA transition pops cx off stack 2, pushes cy into
stack 2, then pops stack 1 and pushes the character into stack 2, and goes
from state dx to dy pops ci off stack 2 and pushes cy into stack 1, and goes
from state xi to xj. So we have simulated the Turing machine using 2-pda

Exercise 3.11
A Turing machine with doubly infinite tapes are similar to an ordinary

Turing machine, but its tape is infinite to the left as well as to

the right. The tape is initially defined as usual except that the

head never encounters an end to the tape as it moves leftward. Show

that this type of Turing machine recognizes the class of Turing-recognizable

languages.

A TM with doubly infinite tape can simulate an ordinary TM. It marks
the square to the left of the input to detect and prevent the head from mov-
ing off of the end of the tape. To simulate the doubly infinite tape TM by
an ordinary TM, we show how to simulate it with a 2-tape TM, which was
already shown to be equivalent in power to an ordinary TM by the book.
The first tape of the 2-tape TM is written with the input string and the
second tape is initially blank. As a first step of the simulation we write a
new symbol X on the left hand squares of each tape. For the first tape we do
this after shifting the contents over by one. We leave the second tape head
over the X on the second tape. We then step by step simulate the doubly
infinite tape machine. While doubly infinite tape machine stays on the input
or to the right, we only move the first tape head of our simulating machine
leaving the second tape on the X. If the doubly infinite tape machine tries to
move left off the input, our machine moves the first tape head onto its X and
then moves its second tape head to the right off of its X. The second tape is

2

then used to simulate the doubly infinite tape machines actions to the left of
the input. Here move lefts (move rights) on the doubly infinite tape machine
correspond to move rights (move lefts) on our simulator on tape 2. When the
doubly infinite tape machine moves right back onto the input again, in our
simulation we move the second tape back onto the X and resume simulating
on the first tape.

Exercise 3.15
a. Let L1 and L2 be decided by TM1 and TM2. We then make a new Turing
machine that we call TM3 which can decide the union between L1 and L2:
On input w:
1. Run TM1 on L1 and if it accepts, then TM1 accepts, if not, TM1 rejects
L1.
2. Run TM2 on L2 and if it accepts, TM2 accepts. If it does not accept,then
TM2 reject.

If either TM1 or TM2 accepts, then TM3 accepts. If both TM1 and TM2
rejects, then TM3 rejects. So we have a machine TM3, which can decide
the union of two decidable languages. So we have shown that two decidable
languages is closed under the union operation because the union is also a
decidable language.

b. We next prove the decidable languages are closed under concatenation.
Given two decidable languages L1 and L2 , let TM1 and TM2 decide them.
We will build a deterministic Turing machine TM3 which will recognize the
concatenation of the two languages: ”On input string w, which is a concate-
nation between two strings:

1. Our decision procedure cycles over the |w| many ways to split w into
w1 ◦ w2.
2. Run TM1 on w1
3. Run TM2 on w2
4. If both of the machine accepts, then TM3 accepts, if not then we will try
with another w1,w2 (This combination produces w).
5. If all the possible w1 and w2 has been tried on the machine, and none
give any accept states for TM1 and TM2 on the same possible cut of w1 and

3

w2, then reject.

c. We prove that the decidable languages are closed under star operation...
Suppose we have a Turing Machine TM1 that recognizes the decidable lan-
guage L1. The following procedure decides (L1)∗

”On input w:
1. We cycle over each way to cut w so that w = w1w2w3...wn
2. Run TM1 on each wk for k=1,....n
If TM1 accepts each of this strings wk,then Accepts
3. If TM1 runs on all possible way to cut w to w1w2w3...wn, but has not
yet no accepted, then we reject.

d. To prove that the decidable languages are closed under the complement,
we will do the following. Given a language L1 decided by Turing machine
TM1, we construct a new Turing Machine TM2 for the complement as fol-
lows:
On input string w :
1. We will run TM1 on the string w, if TM1 accepts TM2 rejects, if TM1
rejects, TM2 accepts.

e. To prove that the decidable languages are closed under the intersection
operation, we will do the following. Suppose we have two languages L1 and
L2 decided by TM1 and TM2. We construct a new Turing Machine TM3
that decides the intersection between L1 and L2.

On the input string w:
1. Run TM1 on w, if TM1 rejects, TM3 rejects
2. Run TM2 on w, if it accepts, and TM1 accepts, then TM3 accepts. If
TM2 itself rejects, then TM3 rejects.

Exercise 4.2
Let EQDF A,REX = {(A,R)|A a DFA, R is a regular expression and L(A)=L(R)}.
The following TM E decides EQDF A,REX :

4

E=On input (A,R):
1. Convert regular expression R into an equivalent DFA B using the proce-
dures given in Theorem 1.54.
2. Use the TM C for deciding EQDF A given in Theorem 4.5, on input (A,B).
3. If R accepts, accept. Otherwise, reject.

Exercise 4.12
We observe that L(R) ⊆ L(S) if and only if L(S)

⋂
L(R) = Ø. The following

TM X decides A.

X = ”On input (R,S) where R and S are regular expressions:
1. Construct a DFA E such that L(E) =L(S)

⋂
L(R).

2. Run TM T on (E), where T decides EDF A from Theorem 4.4.
3. If T accepts, accept. Otherwise, reject.”

Exercise 4.27
Given a CFG G and a number k, first scan the encoding of G to determine
the number m of nonterminals and b the maximum number of nonterminal
on the right hand side of a rule. Then cycle over all possible derivations of
length ≤ bm + 1 where each possible variable is used as a start variable. If it
is possible that a variable can go to a string of terminals it must be possible
to do it with a derivation of less than this size since after length ≤ bm + 1
some variable must repeat. If it is possible let DA be a derivation D −→ w.
Now for each possible derivation beginning with the start variable in G of
length ≤ bm + 1, try continuing the derivation by deriving from the remain-
ing variables A in the output string with their DA. If this gets a string of
terminals ≥ bm + 1 and k = ∞ then accept, this string will be pumpable. If
there is no string ≥ bm + 1 and k = ∞ reject. If there is no string ≥ bm + 1
and k is some other number and then count the number of strings which
are derivable with derivations of length ≤ bm + 1, if this equals k accepts
otherwise reject.

5

