
Homework 3

Student Generated Solutions

April 17, 2006

2.4

a. {w| w contains at least three 1s }
S → R1R1R1R
R → 0R|1R|ε

b. {w| starts and ends with the same symbol }
S → 0S0|1S1|ε

c. {w| the length of w is odd }
S → 0|1|0S1|1S0|0S0|1S1

d. {w| the length of w is odd and its middle symbol is a 0 }
S → 0|0S0|0S1|1S0|1S1

e. {w = wR, that is, w is a palindrome }
S → 0|1|0S0|1S1|ε

f. The empty set

S → S

1

2.10

The PDA could immediately branch in two directions without consuming
input and putting a $ on the stack so we know its top. Acceptance in either
branch will make the machine be in the accept state.

1. Branch one

Read the ’a’ symbols and push them onto the stack. As b’s are read
pop one ’a’ for each ’b’ read. If reading the ’b’s finishes exactly with a
$ on the stack, then as long as the machine reads only c’s accept the
input.

2. Branch two
Read the ‘a’ symbols but do not write them onto the stack. Write the
‘b’ symbols onto to the stack as they are read. Ignore b’s. When the
’c’ symbols are seen, pop one ’b’ for each ’c’ read. If the stack is the
$ sign at the same time as the c’s are done reading, then accept the
string.

2.14

Convert the following CFG into an equivalent CFG in Chomsky normal form
using the procedure given in Theorem 2.9.

A → BAB|B|ε
B → 00|ε

Solution
Step1: Add a new start variable S0

S0 → A
A → BAB|B|ε

B → 00|ε

Step 2: Remove all the ε rules

2

1. Remove A → ε

S0 → A|ε
A → BAB|BB|B

B → 00|ε

2. Remove B → ε

S0 → A|ε
A → BAB|BA|AB|A|BB|B

B → 00

Step 3-2: Remove unit rules

1. Remove A → A

S0 → A|ε
A → BAB|BA|AB|BB|B

B → 00

2. Remove A → B

S0 → A|ε
A → BAB|BA|AB|BB|00

B → 00

3. Remove S0 → A

S0 → BAB|BA|AB|BB|00|ε
A → BAB|BA|AB|BB|00

B → 00

3

Step4: Converting the remaining rules into the proper form by adding
additional variables and rules, the grammar below is in Chomsky normal
equivalent to the CFG given.

S0 → BA1|BA|AB|BB|00|ε
A → BA1|BA|AB|BB|00

A1 → AB
B → 00

Assuming that 0 is the member of the terminal set rather than 00, the CFG
is as following:

S0 → BA1|BA|AB|BB|UU |ε
A → BA1|BA|AB|BB|UU

A1 → AB
U → 0

B → UU

2.27

Let G = (V, Σ, R 〈STMT 〉) be the following grammer.

〈STMT 〉 → 〈ASSIGN〉 | 〈IF − THEN〉 | 〈IF − THEN − ELSE〉
〈IF − THEN〉 → if condition then 〈STMT 〉

〈IF − THEN − ELSE〉 → if condition then 〈STMT 〉 else 〈STMT 〉
〈ASSIGN〉 → a := 1

G is a natural-looking grammer for a fragment of a programming language
but G is ambiguous.

Σ = {if, condition, then, else, a := 1}
V = {〈STMT 〉 , 〈IF − THEN〉 , 〈IF − THEN − ELSE〉 , 〈ASSIGN〉}

a. Show that G is ambiguous

4

G is ambigious if it can be shown that a string from this grammar is
derived ambiguously - that is it can be derived by two or more different
leftmost derivations(or parse trees).

The following are the two leftmost derivations for the string :

“if condition then if condition then a := 1 else a := 1 ”

1. First leftmost derivation.

〈STMT 〉 ⇒ 〈IF − THEN − ELSE〉
⇒ if condition then 〈STMT 〉 else 〈STMT 〉

⇒ if condition then 〈IF − THEN〉 else 〈STMT 〉
⇒ if condition then if condition then 〈STMT 〉 else 〈STMT 〉
⇒ if condition then if condition then 〈ASSIGN〉 else 〈STMT 〉
⇒ if condition then if condition then a := 1 else 〈STMT 〉
⇒ if condition then if condition then a := 1 else 〈ASSIGN〉
⇒ if condition then if condition then a := 1 else a := 1

2. Second leftmost derivation.

〈STMT 〉 ⇒ 〈IF − THEN〉
⇒ if condition then 〈STMT 〉

⇒ if condition then 〈IF − THEN − ELSE〉
⇒ if condition then if condition then 〈STMT 〉 else 〈STMT 〉
⇒ if condition then if condition then 〈ASSIGN〉 else 〈STMT 〉
⇒ if condition then if condition then a := 1 else 〈STMT 〉
⇒ if condition then if condition then a := 1 else 〈ASSIGN〉
⇒ if condition then if condition then a := 1 else a := 1

b. Give a new unambiguous grammar for the same language.

〈STMT 〉 → 〈ASSIGN〉|〈IF − THEN〉
〈IF − THEN〉 → if condition then 〈ASSIGN − ELSE〉
〈IF − THEN〉 → if condition then 〈IF − THEN〉

5

〈ASSIGN − ELSE〉 → 〈ASSIGN〉|〈ASSIGN〉 else 〈IF − THEN〉
〈ASSIGN〉 → a := 1

This will be unambiguous because 〈IF − THEN〉 when it goes to
〈ASSIGN−ELSE〉 forces one to have the string a := 1 else ; whereas,
when it goes to 〈IF − THEN〉 one gets immediately another copy of
if condition then . No other rule was causing ambiguity in the orig-

inal grammar. One can show by induction of the complexity of the
derivations of strings generated by the two grammars that they have
the same strings.

2.30

In each of the following cases, we assume that the specified language is a
CFL and contradict the pumping lemma concept.

a. {0n1n0n1n|n ≥ 0}
Let p be the pumping length and consider the string 0p1p0p1p. By the
pumping lemma there should be uvxyz with |vy| > 0 , |vxy| ≤ p , such
that for all i, uvixyi z belongs to A. If vxy involves two characters
then it must be of the form 0k1j since vxy has length less than p. But
if this is the case, then pumping down would produce a string not in
the language. If vxy involves only 0’s or 1′, then again since |vxy| ≤ p,
these 0’s or 1’s come from the same block, so pumping down produces
a string not in the language.

b. and c. Solutions to these are in the book.

d. {t1#t2#.....tk|k ≥ 0, each ti ∈ {a, b}∗ and ti = tj for some i 6= j }
let p be the pumping length and s= apbp#apbp

We show that s = uvxyz cannot be pumped.
cannot be a part of v and y because it then does uv0xy0z is not in
the language.
If both v and y are nonempty and occur both on the left-hand side or
the right-hand side of of the #, then uv2xy2z will not be in the lan-
guage because it is longer on one side . .

6

If both v and y were non-empty and straddled the #, then by the third
condition v = bj and y = ak for some j and k less than p but then
pumping down produces a string not in the language.

3.2

Sequence of configurations that the Turing Machine M1 enetrs from Example
3.9

a. 11
q111, Xq31, X1q3 bc , X1 bc qreject

b. 1#1
q11#1
Xq3#1
X#q51
X#Xq6

X#q6X
Xq7#X
Xq1#X
X#q8X
X#Xq8 bc
X#X bc qaccept

c. 1##1
q11##1
Xq3##1
X#q5#1
Xqreject

note:(In state q5 reading a # results in a or goes to a reject state be-
cause in q5 no outgoing transition arrow with # is present.

d. 10#11
q110#11

7

Xq30#11
X0q3#11
X0#q511
X0q6#X1
Xq70#X1
q7X0#X1
Xq10#X1
XXq2#X1
XX#q4X1
XX#q41
XX#Xqreject

note:(In state q4 and upoon reading a 1 results in a reject state because
there are no outgoing transition arrow with 1 in q4

e. 10#10
q110#10
X0q3#10
X0#q510
X0q6#X0
Xq70#X0
q7X0#X0
Xq10#X0
XXq2#0
XX#q40
XXq6#X bc
Xq7X#X bc
XXq1#X bc
XX#Xq8X bc
XX#Xq8 bc
XX#X bc qaccept

8

