CS154 Homework 1

SJSU Students

February 16, 2006
0.2
a. $\{1,10,100\}$
b. $\{x \mid x \in \boldsymbol{Z}$ and $x>5\}$
c. $\{0,1,2,3,4\}$
d. $\{a b a\}$
e. $\{\epsilon\}$
f. \emptyset
0.3
a. No, A is not a subset of B since $\mathrm{z} \notin B$ and $\mathrm{z} \in A$.
b. Yes, $B \subseteq A$ since each element of B is in A.
c. $A \cup B=A=\{x, y, z\}$
d. $A \cap B=B=\{x, y\}$
e. $A \times B=\{(x, x),(x, y),(y, x),(y, y),(z, x),(z, y)\}$
f. $\wp(B)=\{\emptyset,\{x\},\{y\},\{x, y\}\}$
0.6
a. $f(2)=7$
b. The range of $f=\{6,7\} /$ The domain of $f=\boldsymbol{X}=\{1,2,3,4,5\}$
c. $g(2,10)=6$
d. The range of $g=\boldsymbol{Y}=\{6,7,8,9,10\} \quad$ The domain of $g=\boldsymbol{X} \times \boldsymbol{Y}$ where
$\boldsymbol{X} \times \boldsymbol{Y}=\{(1,6),(1,7),(1,8),(1,9),(1,10),(2,6),(2,7),(2,8),(2,9)$,
$(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),(4,8),(4,9),(4,10)$,
$(5,6),(5,7),(5,8),(5,9),(5,10)\}$
e. $g(4, f(4))=g(4,7)=8$

0.7

a. Reflexive and symmetric but not transitive
$\boldsymbol{R}=\{(x, y) \mid x, y \in \boldsymbol{Z}$ and $x y \geq 0\}$
It is reflexive because the relation holds when $x=y$ and the relation contains all integers.
It is symmetric because $\mathrm{xy}=\mathrm{yx}$. e.g. $(-8,0) \in \boldsymbol{R}$ and $(0,-8) \in \boldsymbol{R}$.
It is not transitive since both xy and yz have to be 0 or a positive number.
e.g. Suppose $(x, y)=(-7,0) \in \boldsymbol{R}$ and $(y, z)=(0,11) \in \boldsymbol{R}$ but $(x, z)=(-7,11) \notin \boldsymbol{R}$ because $x z<0$.
0.7
b. Reflexive and transitive but not symmetric
$\boldsymbol{R}=\{(x, y) \mid x, y \in \boldsymbol{Z}$ and $x \leq y\}$
It is reflexive because x and y can be equal and so the relation contains all integers.
It is not symmetric because x cannot be greater than y .
e.g. $(-1,5) \in \boldsymbol{R}$, but $(5,-1) \notin \boldsymbol{R}$.

It is transitive since $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{z}$. Hence $\mathrm{x} \leq \mathrm{z}$.
e.g. Suppose $(x, y)=(-4,0) \in \boldsymbol{R}$ and $(y, z)=(0,0) \in \boldsymbol{R}$.

Then, $(x, z)=(-4,0) \in \boldsymbol{R}$.
c. Symmetric and transitive but not reflexive
$\boldsymbol{R}=\{(x, y) \mid x, y \in \boldsymbol{Z}$ and $x y \geq 1\}$
It is not reflexive because $(0,0)$ is not included.
It is symmetric because $\mathrm{xy}=\mathrm{yx}$. e.g. $(-2,-5) \in \boldsymbol{R}$ and $(-5,-2) \in \boldsymbol{R}$.
It is transitive since this relation holds as long as both x and y are either positives or negatives so are y and z. e.g. Suppose $(x, y)=(3,6) \in \boldsymbol{R}$ and $(y, z)=(6,12) \in \boldsymbol{R}$. Then, $(x, z)=(3,12) \in \boldsymbol{R}$ because both x and z are positives. This also applys when x, y, and z are negatives.

0.10

The error in the following proof that $2=1$ is dividing both side by $(\mathrm{a}-\mathrm{b})$ in the Step5 because $(\mathrm{a}-\mathrm{b})=0$. Division of both sides of an equation by the same quantity is valid as long as this quantity is not zero.

Step1. Let $a=b$
Step2. Multiply both side by a to obtain $\mathrm{a}^{2}=\mathrm{ab}$
Step3. Subtract b^{2} from both sides to get $a^{2}-b^{2}=a b-b^{2}$
Step4. Factor each side $(a+b)(a-b)=b(a-b)$
Step5. Divide each side by $(a-b)$ to get $a+b=b$
Step6. Let $a=b=1$
Step7. $2=1$

0.12

Every graph with 2 or more nodes contains two nodes that have equal degrees.
Proof: Let n be the number of nodes of a graph where $\mathrm{n} \geq 2$. Let $\operatorname{deg}\left(\mathrm{v}_{i}\right)$ be the degree, the number of edges at each node, $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}$. An isolated node cannot be present when $\mathrm{n}=2$ by definition of a graph.
Then, $1 \leq \operatorname{deg}\left(\mathrm{v}_{i}\right) \leq n-1$.
By applying the Pigeonhole Principle, there will be $n-1$ pigeonholes (possible number of edges at each node) and n pigions (the number of nodes of a graph). Hence, there must be at least two nodes that have equal degrees .

