CS154 Homework 1

SJSU Students

February 16, 2006

0.2

a. { 1, 10, 100 } **b.** { $x | x \in \mathbb{Z} \text{ and } x > 5$ } **c.** { 0, 1, 2, 3, 4 } **d.** { aba } **e.** { ϵ } **f.** \emptyset

0.3

a. No, A is not a subset of B since $z \notin B$ and $z \in A$. **b.** Yes, $B \subseteq A$ since each element of B is in A. **c.** $A \cup B = A = \{x, y, z\}$ **d.** $A \cap B = B = \{x, y\}$ **e.** $A \times B = \{(x,x), (x,y), (y,x), (y,y), (z,x), (z,y)\}$ **f.** $\wp (B) = \{\emptyset, \{x\}, \{y\}, \{x,y\}\}$

0.6

a. f(2) = 7 **b.** The range of $f = \{6, 7\}$ / The domain of $f = \mathbf{X} = \{1, 2, 3, 4, 5\}$ **c.** g(2, 10) = 6 **d.** The range of $g = \mathbf{Y} = \{6, 7, 8, 9, 10\}$ The domain of $g = \mathbf{X} \times \mathbf{Y}$ where $\mathbf{X} \times \mathbf{Y} = \{(1, 6), (1, 7), (1, 8), (1, 9), (1, 10), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10), (3, 6), (3, 7), (3, 8), (3, 9), (3, 10), (4, 6), (4, 7), (4, 8), (4, 9), (4, 10), (5, 6), (5, 7), (5, 8), (5, 9), (5, 10)\}$ **e.** g(4, f(4)) = g(4, 7) = 8

$\mathbf{0.7}$

a. Reflexive and symmetric but not transitive $\mathbf{R} = \{ (x, y) | x, y \in \mathbf{Z} \text{ and } xy \ge 0 \}$ It is reflexive because the relation holds when x = y and the relation contains all integers. It is symmetric because xy = yx. e.g. $(-8, 0) \in \mathbf{R}$ and $(0, -8) \in \mathbf{R}$. It is not transitive since both xy and yz have to be 0 or a positive number. e.g. Suppose $(x, y) = (-7, 0) \in \mathbf{R}$ and $(y, z) = (0, 11) \in \mathbf{R}$ but $(x, z) = (-7, 11) \notin \mathbf{R}$ because xz < 0.

$\mathbf{0.7}$

b. Reflexive and transitive but not symmetric $\mathbf{R} = \{ (x, y) | x, y \in \mathbf{Z} \text{ and } x \leq y \}$ It is reflexive because x and y can be equal and so the relation contains all integers. It is not symmetric because x cannot be greater than y. e.g. $(-1,5) \in \mathbf{R}$, but $(5,-1) \notin \mathbf{R}$. It is transitive since $x \leq y$ and $y \leq z$. Hence $x \leq z$. e.g. Suppose $(x, y) = (-4, 0) \in \mathbf{R}$ and $(y, z) = (0, 0) \in \mathbf{R}$. Then, $(x, z) = (-4, 0) \in \mathbf{R}$.

c. Symmetric and transitive but not reflexive $\mathbf{R} = \{ (x, y) | x, y \in \mathbf{Z} \text{ and } xy \geq 1 \}$ It is not reflexive because (0, 0) is not included. It is symmetric because xy = yx. e.g. $(-2, -5) \in \mathbf{R}$ and $(-5, -2) \in \mathbf{R}$. It is transitive since this relation holds as long as both x and y are either positives or negatives so are y and z. e.g. Suppose $(x, y) = (3, 6) \in \mathbf{R}$ and $(y, z) = (6, 12) \in \mathbf{R}$. Then, $(x, z) = (3, 12) \in \mathbf{R}$ because both x and z are positives. This also applys when x, y, and z are negatives.

0.10

The error in the following proof that 2 = 1 is dividing both side by (a - b) in the **Step5** because (a - b) = 0. Division of both sides of an equation by the same quantity is valid as long as this quantity is not zero.

Step1. Let a = bStep2. Multiply both side by a to obtain $a^2 = ab$ Step3. Subtract b^2 from both sides to get $a^2 - b^2 = ab - b^2$ Step4. Factor each side (a + b)(a - b) = b(a - b)**Step5. Divide each side by** (a - b) **to get** a + b = bStep6. Let a = b = 1Step7. 2 = 1

0.12

Every graph with 2 or more nodes contains two nodes that have equal degrees.

Proof: Let n be the number of nodes of a graph where $n \ge 2$. Let $\deg(v_i)$ be the degree, the number of edges at each node, v_1, v_2, \ldots, v_n . An isolated node cannot be present when n = 2 by definition of a graph. Then, $1 \le \deg(v_i) \le n - 1$.

By applying the Pigeonhole Principle, there will be n-1 pigeonholes (possible number of edges at each node) and n pigions (the number of nodes of a graph). Hence, there must be at least two nodes that have equal degrees.