Functions, Graphs, Trees and proofs

CS154

Chris Pollett
Jan 31, 2007.

Outline

- O-Notation
- Equivalence Relations
- Graphs and Trees
- Proofs and Proof Strategies
- Strings

Growth Rates of Functions

- Def- Let \mathbf{N} be the nonnegative integers. Let f and g be functions from \mathbf{N} to \mathbf{N}.
- We write $f(n)=O(g(n))$ if there are positive integer c, m such that $f(n) \leq c \bullet g(\mathrm{n})$ for all $n \geq m$. " f grows as g or slower"
- We write $f(n)=\Omega(g(n))$ if $g(n)=O(f(n))$.
- We write $f(n)=\Theta(g(n))$ if $\mathrm{f}(\mathrm{n})=\Omega(g(n))$ and $f(n)=O(g(n))$.
- For example, $\mathrm{n}^{2}+1=\mathrm{O}\left(\mathrm{n}^{2}\right)$. To see this notice, for all $\mathrm{n} \geq 1$, $n^{2}+1 \leq n^{2}+n^{2} \leq 2 \cdot n^{2}$. So $m=1, c=2$ in the above definition.
- You might want to convince yourself that:

$$
\mathrm{n}^{3}=\Omega\left(\mathrm{n}^{2}+\mathrm{n}+1\right) \text { and } \mathrm{n}^{3}+\mathrm{n}^{2}=\Theta\left(\mathrm{n}^{3}\right) .
$$

Equivalence Relations

- One particularly useful kind of relation is an equivalence relation. Such a relation acts like ' $=$ '.
- Like the binary relation equals we will write equivalences in infix notation. i.e., we'll write $x R y$ rather than $(x, y) \in R$ or $\mathrm{R}(\mathrm{x}, \mathrm{y})$.
- A binary relation R is an equivalence relation if for each $\mathrm{x}, \mathrm{y}, \mathrm{z}$:
- R is reflexive, that is, $x R x$. ($x R x$ is just R written in infix and we write $x R x$ to mean $x R x=$ TRUE).
- R is symmetric, that is, $x R y$ implies $y R x$
- R is transitive, that is, $x R y$ and $y R z$ implies $x R z$.
- The equivalence class of \mathbf{x}, denoted [x], is the set:

$$
\{y \mid x R y\}
$$

- We often write \equiv or \sim rather than R for equivalence relations.

Example Equivalence Relations

- Last day, we defined the natural numbers in terms of sets.
- Let ' - ' be coded as 0 , and ' + ' be coded as 1 .
- \mathbf{Z} - the integers are $\{[(\operatorname{sgn}, \mathrm{n})] \mid \operatorname{sgn} \in\{-,+\} \wedge n \in \mathbf{N}\}$ under the equivalence relation:
$(\operatorname{sgn}, \mathrm{n}) \sim\left(\operatorname{sgn}^{\prime}, \mathrm{n}^{\prime}\right)$ if $\mathrm{n}=\mathrm{n}^{\prime}$ and $\operatorname{sgn}=\operatorname{sgn} n^{\prime}$ or if $\mathrm{n}=\mathrm{n}^{\prime}=0$
- To keep things simple we abbreviate $(+, \mathrm{n})$ as n and $(-, \mathrm{n})$ as -n . The $n=n^{\prime}=0$ case is so that $-0 \sim 0$.
- You might want to think how addition, subtraction, and less than can be defined within this definition of the integers.
- Once we do this, we get the usual view of the integers as ..-2,-1,0,1,2..
- \mathbf{Q} - the rational numbers can be defined as the set of equivalence classes of pairs of integers (p, q) (which we write as p / q) such that $q \geq 1$ and where $p / q \sim p^{\prime} / q^{\prime}$ if and only if $p \cdot q^{\prime}=p^{\prime} \cdot q$.
- For example, $1 / 2 \sim 2 / 4$ as $1 \cdot 4=2 \cdot 2$.

Graphs

- A graph (sometimes called a directed graph) is a pair $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ where V is a set of vertices (aka points or nodes) and $\mathrm{E} \subseteq \mathrm{VxV}^{2}$ is a set of edges between points. For example, $(\{1,2,3,4\},\{(1,2),(2,4)$, $(1,1),(3,4)\})$
- We can draw a graph like this pictorially:

- An edge of the form (v, v) is called a loop. For example, $(1,1)$ above.
- An undirected graph (or just a graph) is graph in which we can ignore the direction on the edges. One way to do this is to require that if (v, w) is in E then (w, v) is also in E.
- For example, the undirected version of the above graph would be : $(\{1,2,3,4\},\{(1,2),(2,1),(2,4),(4,2),(1,1),(3,4),(4,3)\})$

More on Graphs

- Last day, we defined the cartesian power of a set $\mathrm{A}^{\mathrm{n}}=\mathrm{Ax} . . \mathrm{n}$ time..xA.
- A sequence of elements from a set A is a tuple in A^{n} for some n .
- A sequence of edges of the form $\left(\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right), \ldots,\left(\mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right)\right)$ in a graph is called a walk. For example, $w=((1,2),(2,4),(4,1),(1,2))$ below is a walk.
- The length of a walk is the number of edges in it. length $(\mathrm{w})=4$
- A path is a walk in which no edge is repeated. For example, $p=((1,2),(2,4)$, $(4,1),(1,3))$ below is a path, w is not.
- A simple path is a path that does not go out of any vertex more than once. For example, $\mathrm{p}^{\prime}=((1,2),(2,4),(4,3))$ is simple, p is not a simple path.
- A cycle is a path which begins and ends at the same node. A cycle is simple if it does not repeat nodes except the end point twice. For example, ((1,2), (2,4), $(4,1),(1,2),(2,4),(4,1))$ is a cycle but is not simple; whereas, $((1,2),(2,4)$, $(4,1))$ is a simple cycle.

Finding Simple Paths

- In this course, we will find it useful to have an algorithm which on inputs a graph $G=(V, E)$ and two vertices s, t, computes a simple path from s to t, if there is a simple path between these points.
- To do this we maintain a set A of active nodes and a set S of seen nodes.
- Initialize $A=\{s\}, S=\varnothing$.
- Repeat until either $t \in A$ or $A=\varnothing$
- Pick an $x \in A$, set $S:=S \cup\{x\}$.
$-\operatorname{Let} \operatorname{UnseenChild}(x):=\{y \mid(x, y) \in E \wedge y \notin S\}$.
- Set A := A UUnseenChild(x) - \{x\}
- If $A=\varnothing$ then output "there is no path s to t "
- Otherwise, we can find a path in reverse order by looking in S for some x such that $(x, t) \in E$, then looking in S for some y such that $(y, x) \in E$, and so on until we get back to s. This will be a simple path.

Trees

- A tree is a graph without cycles, and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex.
- The root has no incoming edges.
- Any node without outgoing edges is called a leaf.
- In (v,w) is an edge in a tree, then v is called the parent of w and w is called the child of v.
- The level of a vertex is the number of edges in the path from the root to that vertex.
- The height of a tree is the largest level number of any vertex.

Definitions, Theorems, Proofs

- Definitions describes the objects and notions that we use. We want our definitions to be as precise as possible.
- Once we have made some definitions we make mathematical statements involving them.
- A proof is a convincing logical argument that a statement is true.
- A theorem is a mathematical statement which has been proved true.
- A lemma is a simple mathematical statement which has been proved true and which will be used in the proof of a theorem.
- A proposition is a mathematical statement with an easy proof. One can view it like a warm-up result, which does not immediately lead to the proof of a theorem
- A corollary is a mathematical statement which can be proved easily once some theorem is known.

