Functions, Graphs, Trees and
proofs

CS154
Chris Pollett
Jan 31, 2007.

Outline

O-Notation

Equivalence Relations
Graphs and Trees

Proofs and Proof Strategies

Strings

Growth Rates of Functions

Def® Let N be the nonnegative integers. Let fand g be
functions from N to N.

— We write f(n) = O(g(n)) if there are positive integer ¢, m such that
f(n) < ce°g(n) for all n = m. “f grows as g or slower”

— We write f(n) = Q (g(n)) if g(n) = O(f(n)).

— We write f(n) = ©(g(n)) it f(n) = L(g(n)) and f(n) = O(g(n)).
For example, n’+1 = O(n?). To see this notice, for all n =1,
n?+1 < n?+ n?< 2:n% So m=1, c=2 in the above definition.
You might want to convince yourself that:

n’ = Q(n*+n+1) and n? + n’= O(n?).

Equivalence Relations

One particularly useful kind of relation is an equivalence
relation. Such a relation acts like ‘=",

Like the binary relation equals we will write equivalences
in infix notation. i.e., we’ll write xRy rather than (x,y) €R
or R(x,y).

A binary relation R is an equivalence relation if for each
X,y,Z:

— Ris reflexive, that is, XRx. (xRx is just R written in infix and we
write XRx to mean xRx = TRUE).

— R is symmetric, that is, xRy implies yRx
— R is transitive, that is, xRy and yRz implies xRz.
The equivalence class of x, denoted [x], is the set:

{y I xRy }

We often write = or ~ rather than R for equivalence
relations.

Example Equivalence
Relations

Last day, we defined the natural numbers in terms of sets.
Let -’ be coded as O, and ‘+’ be coded as 1.

Z - the integers are {[(sgn, n)] | sgn&{-, +} A n € N} under the
equivalence relation:

(sgn, n)~(sgn’,n”) if n=n" and sgn = sgn” or if n=n"=0
To keep things simple we abbreviate (+, n) as n and (-, n) as -n. The
n=n"=0 case is so that -0~0.
You might want to think how addition, subtraction, and less than can
be defined within this definition of the integers.
Once we do this, we get the usual view of the integers as ..-2,-1,0,1,2..

Q - the rational numbers can be defined as the set of equivalence
classes of pairs of integers (p,q) (which we write as p/q) such that g=1
and where p/q~p’/q ifandonlyifp-q=p” - q.

For example, 1/2 ~2/4 as 1:4 =2-2.

Graphs

A graph (sometimes called a directed graph) is a pair G=(V,E) where
V is a set of vertices (aka points or nodes) and ECVxV is a set of
edges between points. For example, ({1,2,3,4}, {(1,2),(2,4),

(1,1),3.4)})
We can draw a graph like this pictorially:

s

O———0O

An edge of the form (v,v) is called a loop. For example, (1,1) above.

An undirected graph (or just a graph) is graph in which we can
ignore the direction on the edges. One way to do this is to require that
if (v,w) 1s in E then (w,v) 1s also in E.

3

For example, the undirected version of the above graph would be :
({1,2,3,4}, {(1,2),(2,1), (2,4),(4,2), (1,1),(3,4), (4.3)})

S

35 4

More on Graphs

Last day, we defined the cartesian power of a set A"=Ax..n time..xA.
A sequence of elements from a set A is a tuple in A" for some n.

A sequence of edges of the form ((v, v,), (V,, V3), ...,(v,,V,)) in a graph is
called a walk. For example, w=((1,2), (2,4), (4,1), (1,2)) below is a walk.
The length of a walk is the number of edges in it. length(w) =4

A path is a walk in which no edge is repeated. For example, p=((1,2), (2,4),
(4,1), (1,3)) below is a path, w is not.

A simple path is a path that does not go out of any vertex more than once.
For example, p'=((1,2), (2,4), (4,3)) is simple, p is not a simple path.

A cycle is a path which begins and ends at the same node. A cycle is simple if
it does not repeat nodes except the end point twice. For example, ((1,2), (2,4),
4,1), (1,2), (2,4), (4,1)) is a cycle but is not simple; whereas, ((1,2), (2,4),
(4,1)) 1s a simple cycle.

Finding Simple Paths

In this course, we will find it useful to have an algorithm which on
inputs a graph G=(V,E) and two vertices s, t, computes a simple path
from s to t, if there 1s a simple path between these points.

To do this we maintain a set A of active nodes and a set S of seen
nodes.

Initialize A={s}, S= .

Repeat until either t EA or A=
— Pickan x € A, set S := SU{x}.
— Let UnseenChild(x) := {y | (x,y) EE A y & S}.
— Set A := A UUnseenChild(x) - {x}

If A=0 then output “there is no path s to t”

Otherwise, we can find a path in reverse order by looking

in S for some X such that (x,t) € E, then looking in S for some y
such that (y,x) € E, and so on until we get back to s. This will be a
simple path.

Trees

A tree is a graph without cycles, and that has one distinct vertex,
called the root, such that there is exactly one path from the root to
every other vertex.

The root has no incoming edges.
Any node without outgoing edges is called a leaf.

In (v,w) is an edge in a tree, then v is called the parent of w and w is
called the child of v.

The level of a vertex is the number of edges in the path from the root
to that vertex.

The height of a tree is the largest level number of any vertex.

Root —~ level0
Q/ o8 Height=3
Leaf

Definitions, Theorems, Proofs

Definitions describes the objects and notions that we use. We want our
definitions to be as precise as possible.

Once we have made some definitions we make mathematical
statements involving them.

A proof is a convincing logical argument that a statement is true.
A theorem is a mathematical statement which has been proved true.

A lemma is a simple mathematical statement which has been proved
true and which will be used in the proof of a theorem.

A proposition is a mathematical statement with an easy proof. One
can view it like a warm-up result, which does not immediately lead to
the proof of a theorem

A corollary is a mathematical statement which can be proved easily
once some theorem is known.

