
Functions, Graphs, Trees and
proofs

CS154
Chris Pollett
Jan 31, 2007.

Outline

• O-Notation
• Equivalence Relations
• Graphs and Trees
• Proofs and Proof Strategies
• Strings

Growth Rates of Functions

• Defn Let N be the nonnegative integers. Let f and g be
functions from N to N.
– We write f(n) = O(g(n)) if there are positive integer c, m such that

f(n) ≤ c•g(n) for all n ≥ m. “f grows as g or slower”
– We write f(n) = Ω (g(n)) if g(n) = O(f(n)).
– We write f(n) = Θ(g(n)) if f(n) = Ω(g(n)) and f(n) = O(g(n)).

• For example, n2+1 = O(n2). To see this notice, for all n ≥1,
n2+1 ≤ n2+ n2 ≤ 2·n2. So m=1, c=2 in the above definition.

• You might want to convince yourself that:
n3 = Ω(n2+n+1) and n3 + n2= Θ(n3).

Equivalence Relations
• One particularly useful kind of relation is an equivalence

relation. Such a relation acts like ‘=’.
• Like the binary relation equals we will write equivalences

in infix notation. i.e., we’ll write xRy rather than (x,y) ∈ R
or R(x,y).

• A binary relation R is an equivalence relation if for each
x,y,z:
– R is reflexive, that is, xRx. (xRx is just R written in infix and we

write xRx to mean xRx = TRUE).
– R is symmetric, that is, xRy implies yRx
– R is transitive, that is, xRy and yRz implies xRz.

• The equivalence class of x, denoted [x], is the set:
{y | xRy }

• We often write ≡ or ~ rather than R for equivalence
relations.

Example Equivalence
Relations

• Last day, we defined the natural numbers in terms of sets.
• Let ‘-’ be coded as 0, and ‘+’ be coded as 1.
• Z - the integers are {[(sgn, n)] | sgn∈{- , +} ∧ n ∈ N} under the

equivalence relation:
(sgn, n)~(sgn´, n´) if n=n´ and sgn = sgn´ or if n=n´=0

• To keep things simple we abbreviate (+, n) as n and (-, n) as -n. The
n=n´=0 case is so that -0~0.

• You might want to think how addition, subtraction, and less than can
be defined within this definition of the integers.

• Once we do this, we get the usual view of the integers as ..-2,-1,0,1,2..
• Q - the rational numbers can be defined as the set of equivalence

classes of pairs of integers (p,q) (which we write as p/q) such that q≥1
and where p/q ~ p´/q´ if and only if p · q´= p´ · q.

• For example, 1/2 ~ 2/4 as 1·4 = 2·2.

Graphs
• A graph (sometimes called a directed graph) is a pair G=(V,E) where

V is a set of vertices (aka points or nodes) and E⊆VxV is a set of
edges between points. For example, ({1,2,3,4}, {(1,2),(2,4),
(1,1),(3,4)})

• We can draw a graph like this pictorially:

• An edge of the form (v,v) is called a loop. For example, (1,1) above.
• An undirected graph (or just a graph) is graph in which we can

ignore the direction on the edges. One way to do this is to require that
if (v,w) is in E then (w,v) is also in E.

• For example, the undirected version of the above graph would be :
({1,2,3,4}, {(1,2),(2,1), (2,4),(4,2), (1,1),(3,4), (4,3)})

1

3 4

2

1

3 4

2

More on Graphs
• Last day, we defined the cartesian power of a set An=Ax..n time..xA.
• A sequence of elements from a set A is a tuple in An for some n.
• A sequence of edges of the form ((v1, v2), (v2, v3), …,(vn-1,vn)) in a graph is

called a walk. For example, w=((1,2), (2,4), (4,1), (1,2)) below is a walk.
• The length of a walk is the number of edges in it. length(w) = 4
• A path is a walk in which no edge is repeated. For example, p=((1,2), (2,4),

(4,1), (1,3)) below is a path, w is not.
• A simple path is a path that does not go out of any vertex more than once.

For example, p´=((1,2), (2,4), (4,3)) is simple, p is not a simple path.
• A cycle is a path which begins and ends at the same node. A cycle is simple if

it does not repeat nodes except the end point twice. For example, ((1,2), (2,4),
(4,1), (1,2), (2,4), (4,1)) is a cycle but is not simple; whereas, ((1,2), (2,4),
(4,1)) is a simple cycle.

1

3 4

2

Finding Simple Paths

• In this course, we will find it useful to have an algorithm which on
inputs a graph G=(V,E) and two vertices s, t, computes a simple path
from s to t, if there is a simple path between these points.

• To do this we maintain a set A of active nodes and a set S of seen
nodes.

• Initialize A={s}, S= ∅.
• Repeat until either t ∈A or A=∅

– Pick an x ∈ A, set S := S∪{x}.
– Let UnseenChild(x) := {y | (x,y) ∈ E ∧ y ∉ S}.
– Set A := A ∪UnseenChild(x) - {x}

• If A=∅ then output “there is no path s to t”
• Otherwise, we can find a path in reverse order by looking

in S for some x such that (x,t) ∈ E, then looking in S for some y
such that (y,x) ∈ E, and so on until we get back to s. This will be a
simple path.

Trees
• A tree is a graph without cycles, and that has one distinct vertex,

called the root, such that there is exactly one path from the root to
every other vertex.

• The root has no incoming edges.
• Any node without outgoing edges is called a leaf.
• In (v,w) is an edge in a tree, then v is called the parent of w and w is

called the child of v.
• The level of a vertex is the number of edges in the path from the root

to that vertex.
• The height of a tree is the largest level number of any vertex.

Root

Leaf

level 0

level 3

Height=3

Definitions, Theorems, Proofs
• Definitions describes the objects and notions that we use. We want our

definitions to be as precise as possible.
• Once we have made some definitions we make mathematical

statements involving them.
• A proof is a convincing logical argument that a statement is true.
• A theorem is a mathematical statement which has been proved true.
• A lemma is a simple mathematical statement which has been proved

true and which will be used in the proof of a theorem.
• A proposition is a mathematical statement with an easy proof. One

can view it like a warm-up result, which does not immediately lead to
the proof of a theorem

• A corollary is a mathematical statement which can be proved easily
once some theorem is known.

